Abstract
To reduce the risk of privacy disclosure during personal data publishing, the approach of anonymization is widely employed. On this topic, current studies mainly focus on two directions: (1)developing privacy preserving models which satisfy certain constraints, such as k-anonymity, l-diversity, etc.; (2)designing algorithms for certain privacy preserving model to achieve better privacy protection as well as less information loss. This paper generally belongs to the second class. We introduce an effective algorithm “BSGI” for the widely accepted privacy preserving model: l-diversity. In the meantime, we propose a novel interpretation of l-diversity: Unique Distinct l-diversity, which can be properly achieved by BSGI. We substantiate it’s a stronger l-diversity model than other interpretations. Related to the algorithm, we conduct the first research on the optimal assignment of parameter l according to certain dataset. Extensive experimental evaluation shows that Unique Distinct l-diversity provides much better protection than conventional l-diversity models, and BSGI greatly outperforms the state of the art in terms of both efficiency and data quality.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Samarati, P.: Protecting respondents identities in microdata release. TKDE 13(6), 1010–1027 (2001)
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 571–588 (2002)
Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: PODS, p. 188 (1998)
Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowlege-Based Systems 10(5), 557–570 (2002)
Machanavajjhala, A., Gehrke, J., Kifer, D.: l-diversity: Privacy beyond k-anonymity. In: ICDE, p. 24 (2006)
Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE, pp. 106–115 (2007)
Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD, pp. 229–240 (2006)
Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB, pp. 139–150 (2006)
Ercan Nergiz, M., Atzori, M., Clifton, C.W.: Hiding the Presence of Individuals from Shared Databases. In: SIGMOD, pp. 665–676 (2007)
Xiao, X., Tao, Y.: m-Invariance: Towards Privacy Preserving Re-publication of Dynamic Datasets. In: SIGMOD, pp. 689–700 (2007)
Byun, J.-W., Li, T., Bertino, E., Li, N., Sohn, Y.: Privacy-Preserving Incremental Data Dissemination. CERIAS Tech Report, Purdue University (2007-07)
Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.: Utility-Based Anonymization Using Local Recoding. In: SIGKDD, pp. 785–790 (2006)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity. In: SIGMOD, pp. 49–60 (2005)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: ICDE, p. 25 (2006)
Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymization Using Clustering Techniques. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882. Springer, Heidelberg (2006)
Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE, pp. 217–228 (2005)
Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonymity. In: JOPT (2005)
Iyengar, V.: Transforming data to satisfy privacy constraints. In: SIGKDD, pp. 279–288 (2002)
Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: VLDB, pp. 901–909 (2005)
U.C. Irvin Machine Learning Repository, http://archive.ics.uci.edu/ml/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ye, Y., Deng, Q., Wang, C., Lv, D., Liu, Y., Feng, J. (2008). BSGI: An Effective Algorithm towards Stronger l-Diversity. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2008. Lecture Notes in Computer Science, vol 5181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85654-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-85654-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85653-5
Online ISBN: 978-3-540-85654-2
eBook Packages: Computer ScienceComputer Science (R0)