Skip to main content

BSGI: An Effective Algorithm towards Stronger l-Diversity

  • Conference paper
Database and Expert Systems Applications (DEXA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5181))

Included in the following conference series:

  • 1208 Accesses

Abstract

To reduce the risk of privacy disclosure during personal data publishing, the approach of anonymization is widely employed. On this topic, current studies mainly focus on two directions: (1)developing privacy preserving models which satisfy certain constraints, such as k-anonymity, l-diversity, etc.; (2)designing algorithms for certain privacy preserving model to achieve better privacy protection as well as less information loss. This paper generally belongs to the second class. We introduce an effective algorithm “BSGI” for the widely accepted privacy preserving model: l-diversity. In the meantime, we propose a novel interpretation of l-diversity: Unique Distinct l-diversity, which can be properly achieved by BSGI. We substantiate it’s a stronger l-diversity model than other interpretations. Related to the algorithm, we conduct the first research on the optimal assignment of parameter l according to certain dataset. Extensive experimental evaluation shows that Unique Distinct l-diversity provides much better protection than conventional l-diversity models, and BSGI greatly outperforms the state of the art in terms of both efficiency and data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Samarati, P.: Protecting respondents identities in microdata release. TKDE 13(6), 1010–1027 (2001)

    Google Scholar 

  2. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 571–588 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: PODS, p. 188 (1998)

    Google Scholar 

  4. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowlege-Based Systems 10(5), 557–570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Machanavajjhala, A., Gehrke, J., Kifer, D.: l-diversity: Privacy beyond k-anonymity. In: ICDE, p. 24 (2006)

    Google Scholar 

  6. Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE, pp. 106–115 (2007)

    Google Scholar 

  7. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD, pp. 229–240 (2006)

    Google Scholar 

  8. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB, pp. 139–150 (2006)

    Google Scholar 

  9. Ercan Nergiz, M., Atzori, M., Clifton, C.W.: Hiding the Presence of Individuals from Shared Databases. In: SIGMOD, pp. 665–676 (2007)

    Google Scholar 

  10. Xiao, X., Tao, Y.: m-Invariance: Towards Privacy Preserving Re-publication of Dynamic Datasets. In: SIGMOD, pp. 689–700 (2007)

    Google Scholar 

  11. Byun, J.-W., Li, T., Bertino, E., Li, N., Sohn, Y.: Privacy-Preserving Incremental Data Dissemination. CERIAS Tech Report, Purdue University (2007-07)

    Google Scholar 

  12. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.: Utility-Based Anonymization Using Local Recoding. In: SIGKDD, pp. 785–790 (2006)

    Google Scholar 

  13. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity. In: SIGMOD, pp. 49–60 (2005)

    Google Scholar 

  14. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: ICDE, p. 25 (2006)

    Google Scholar 

  15. Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymization Using Clustering Techniques. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882. Springer, Heidelberg (2006)

    Google Scholar 

  16. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE, pp. 217–228 (2005)

    Google Scholar 

  17. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonymity. In: JOPT (2005)

    Google Scholar 

  18. Iyengar, V.: Transforming data to satisfy privacy constraints. In: SIGKDD, pp. 279–288 (2002)

    Google Scholar 

  19. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: VLDB, pp. 901–909 (2005)

    Google Scholar 

  20. U.C. Irvin Machine Learning Repository, http://archive.ics.uci.edu/ml/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sourav S. Bhowmick Josef Küng Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ye, Y., Deng, Q., Wang, C., Lv, D., Liu, Y., Feng, J. (2008). BSGI: An Effective Algorithm towards Stronger l-Diversity. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2008. Lecture Notes in Computer Science, vol 5181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85654-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85654-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85653-5

  • Online ISBN: 978-3-540-85654-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics