Abstract
A Semantic Decision Table (SDT) provides a means to capture and examine decision makers’ concepts, as well as a tool for refining their decision knowledge and facilitating knowledge sharing in a scalable manner. One challenge SDT faces is to organize decision resources represented in a tabular format based on the user’s needs at different levels. It is important to make it self organized and automatically reorganized when the requirements are updated. This paper describes the ongoing research on SDT and its tool that supports the self organizations and automatic reorganization of decision tables. We argue that simplicity, precision, and flexibility are the key issues to respond to the paper challenge. We propose a novel combination of the principles of Decision Support and Database Modeling, together with the modern technologies in Ontology Engineering, in the adaptive self-organization and automatic reorganization procedures (SOAR).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Camps Paré, R.: From Ternary Relationship to Relational Tables: A Case against. Common Beliefs, SIGMOD Record 31(20) (2002)
Cavouras, J.C.: On the Conversion of Programs to Decision Tables: Method and Objectives. Commun. ACM 17(8), 456–462 (1974)
CSA, Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)
Geesink, L.H., van Dijk, J.E.M.: The construction of decision tables in PROLOG. Angewandte Informatik archive 30(7), 294–301 (1988)
Goelman, D., Song, I.-Y.: Entity-Relationship Modeling Re-revisited. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 43–54. Springer, Heidelberg (2004)
Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In: Workshop on Formal Ontology, Padva, Italy; In book Formal Ontology in Conceptual Analysis and Knowledge Representation. Kluwer Academic Publishers (1993)
Guarino, N., Poli, R.: Formal Ontology in Conceptual Analysis and Knowledge Representation. Special issue of the International Journal of Human and Computer Studies 43(5/6) (1995)
Halpin, T.: Information Modeling and Relational Database: from Conceptual Analysis to Logical Design. Morgan-Kaufmann, San Francisco (2001)
Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases. In: Proc. of the 21st international conference on very large databases (VLDB 1995), Zurich, Switzerland, pp. 420–431. Morgan Kaufman, San Francisco (1995)
Hewett, R., Leuchner, J.H.: The Power of Second-Order Decision Tables. In: Proc. of the Second SIAM International Conference on Data Mining, Arlington, VA, USA. SDM 2002, April 11-13, 2002. SIAM, Philadelphia (2002)
Kohavi, R.: The Power of Decision Tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS(LNAI), vol. 912, pp. 174–189. Springer, Heidelberg (1995)
Langenwalter, D.F.: Decision tables - an effective programming tool. In: Proc. of the first SIGMINI symposium on Small systems, pp. 77–85. ACM, New York (1978)
Sadri, F., Ullman, J.D.: Template dependencies: a large class of dependencies in Relational Databases and its complete approximatization. Journal of the ACM (JACM) 29(2), 363–372 (1982)
Sheth, A.: Data Semantics: What, Where and How? Database Applications Semantics. In: Proc. of the Sixth IFIP TC-2 Working Conference on Data Semantics (DS-6), Stone Mountain, Atlanta, Georgia, USA, Chapman & Hall, Boca Raton (1996)
Sheth, A.P., Ramakrishnan, C.: Semantic (Web) Technology In Action: Ontology Driven Information Systems for Search, Integration and Analysis. IEEE Data Engineering Bulletin, IEEE Data Engineering 26(4), 40–48 (2003)
Smith, H., Fingar, P.: Business Process Management: The Third Wave, 1st edn. Meghan-Kiffer, USA (2002)
Spyns, P., Meersman, R., Jarrar, M.: Data Modeling versus Ontology Engineering. SIGMOD Record: Special Issue on Semantic Web and Data Management 31(4), 12–17 (2002)
Sterbenz, R.F.: Tabsol decision table preprocessor. ACM SIGPLAN Notices archive 6(8) (September 1971); special issue on decision tables, pp. 33 – 40, B.F. Goodrich Chemical Company, Cleveland, Ohio. ACM, New York (ISSN:0362-1340)
Tang, Y.: On Conducting a Decision Group to Construct Semantic Decision Tables. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 534–543. Springer, Heidelberg (2007)
Tang, Y., Meersman, R.: On constructing semantic decision tables. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 34–44. Springer, Heidelberg (2007)
Tang, Y., Meersman, R.: Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 272–284. Springer, Heidelberg (2007)
Vanthienen, J.: Ruling the business: about Business Rules, Decision Tables and Intelligent Agents. In: Vandenbulcke, J., Snoeck, M. (eds.) New directions in Software Engineering, pp. 103–120, 160. Leuven University Press, Leuven (2001)
Wets, G., Vanthienen, J., Mues, C., Timmermans, H.: Extracting complete and consistent knowledge patterns from data. In: van Harmelen, F. (ed.) Proc. of Sixth International Conference on Principles of Knowledge Representation and Reasoning: V&V Workshop, Trento, Italy (1998) ISSN 1613-0073
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tang, Y., Meersman, R., Vanthienen, J. (2008). Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2008. Lecture Notes in Computer Science, vol 5181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85654-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-85654-2_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85653-5
Online ISBN: 978-3-540-85654-2
eBook Packages: Computer ScienceComputer Science (R0)