Skip to main content

On Top-k Search with No Random Access Using Small Memory

  • Conference paper
Advances in Databases and Information Systems (ADBIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5207))

Abstract

Methods of top-k search with no random access can be used to find k best objects using sorted lists of attributes that can be read only by sorted access. Such methods usually need to work with a large number of candidates during the computation. In this paper we propose new methods of no random access top-k search that can be used to compute k best objects using small memory. We present results of experiments showing improvement in speed depending on ratio of memory size and data size. Our system outperforms other also when the total number of attributes is much bigger than number of query attributes (varying with user).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akbarinia, R., Pacitti, E., Valduriez, P.: Best Position Algorithms for Top-k Queries. In: VLDB (2007)

    Google Scholar 

  2. Bast, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum, G.: IO-Top-k: Index-Access Optimized Top-k Query Processing. In: VLDB (2006)

    Google Scholar 

  3. Balke, W., Güntzer, U.: Multi-objective Query Processing for Database Systems. In: VLDB (2004)

    Google Scholar 

  4. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases. In: ICDE (2002)

    Google Scholar 

  5. Chang, K.C.C., Hwang, S.W.: Minimal probing: Supporting expensive predicates for top-k queries. In: SIGMOD (2002)

    Google Scholar 

  6. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: ACM PODS (2001)

    Google Scholar 

  7. Gurský, P., Lencses, R., Vojtáš, P.: Algorithms for user dependent integration of ranked distributed information. In: TCGOV (2005)

    Google Scholar 

  8. Gurský, P., Šumák, M.: Top-k aggregator. In: Tools for Acquisition, Organisation and Presenting of Information and Knowledge, project proceedings (2006)

    Google Scholar 

  9. Gurský, P., Horváth, T., Novotný, R., Vaneková, V., Vojtáš, P.: UPRE: User preference based search system. In: IEEE/WIC/ACM Web Inteligence (2006)

    Google Scholar 

  10. Güntzer, U., Balke, W., Kiessling, W.: Towards efficient multi-feature queries in heterogeneous enviroments. In: ITCC (2001)

    Google Scholar 

  11. Horváth, T., Vojtáš, P.: Ordinal Classification with Monotonicity Constraints. In: Proc. 6th Industrial Conference on Data Mining ICDM (2006)

    Google Scholar 

  12. Hristidis, V., Papakonstantinou, Y.: Algorithms and Applications for answering Ranked Queries using Ranked Views. VLDB Journal 13(1) (2004)

    Google Scholar 

  13. Ilyas, I., Aref, W., Elmagarmid, A.: Supporting top-k join queries in relational database. In: VLDB (2003)

    Google Scholar 

  14. Ilyas, I., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware query optimization. In: SIGMOD (2004)

    Google Scholar 

  15. Li, C., Chang, K., Ilyas, I., Song, S.: RankSQL: Query algebra and optimization for relational top-k queries. In: SIGMOD (2005)

    Google Scholar 

  16. Ramakrishnan, R., Gherke, J.: Database management systems, 3rd edn. McGraw-Hill, New York (2003)

    MATH  Google Scholar 

  17. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Top-k Query Processing in Uncertain Databases. In: Proc. ICDE (2007)

    Google Scholar 

  18. Re, C., Dalvi, N.N., Suciu, D.: Efficient Top-k Query Evaluation on Probabilistic Data. In: Proc. ICDE (2007)

    Google Scholar 

  19. Theobald, M., Schenkel, R., Weikum, G.: An Efficient and Versatile Query Engine for TopX Search. In: VLDB (2005)

    Google Scholar 

  20. Yu, H., Hwang, S., Chang, K.: Enabling Soft Queries for Data Retrieval. Information Systems. Elsevier, Amsterdam (2007)

    Google Scholar 

  21. Xin, D., Han, J., Chang, K.: Progressive and Selective Merge: Computing Top-K with Ad-Hoc Ranking Functions. In: SIGMOD (2007)

    Google Scholar 

  22. Zhang, Z., Hwang, S., Chang, K., Wang, M., Lang, C., Chang, Y.: Boolean + Ranking: Querying a Database by K-Constrained Optimization. In: SIGMOD (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paolo Atzeni Albertas Caplinskas Hannu Jaakkola

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurský, P., Vojtáš, P. (2008). On Top-k Search with No Random Access Using Small Memory. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds) Advances in Databases and Information Systems. ADBIS 2008. Lecture Notes in Computer Science, vol 5207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85713-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85713-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85712-9

  • Online ISBN: 978-3-540-85713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics