Abstract
Methods of top-k search with no random access can be used to find k best objects using sorted lists of attributes that can be read only by sorted access. Such methods usually need to work with a large number of candidates during the computation. In this paper we propose new methods of no random access top-k search that can be used to compute k best objects using small memory. We present results of experiments showing improvement in speed depending on ratio of memory size and data size. Our system outperforms other also when the total number of attributes is much bigger than number of query attributes (varying with user).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbarinia, R., Pacitti, E., Valduriez, P.: Best Position Algorithms for Top-k Queries. In: VLDB (2007)
Bast, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum, G.: IO-Top-k: Index-Access Optimized Top-k Query Processing. In: VLDB (2006)
Balke, W., Güntzer, U.: Multi-objective Query Processing for Database Systems. In: VLDB (2004)
Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases. In: ICDE (2002)
Chang, K.C.C., Hwang, S.W.: Minimal probing: Supporting expensive predicates for top-k queries. In: SIGMOD (2002)
Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: ACM PODS (2001)
Gurský, P., Lencses, R., Vojtáš, P.: Algorithms for user dependent integration of ranked distributed information. In: TCGOV (2005)
Gurský, P., Šumák, M.: Top-k aggregator. In: Tools for Acquisition, Organisation and Presenting of Information and Knowledge, project proceedings (2006)
Gurský, P., Horváth, T., Novotný, R., Vaneková, V., Vojtáš, P.: UPRE: User preference based search system. In: IEEE/WIC/ACM Web Inteligence (2006)
Güntzer, U., Balke, W., Kiessling, W.: Towards efficient multi-feature queries in heterogeneous enviroments. In: ITCC (2001)
Horváth, T., Vojtáš, P.: Ordinal Classification with Monotonicity Constraints. In: Proc. 6th Industrial Conference on Data Mining ICDM (2006)
Hristidis, V., Papakonstantinou, Y.: Algorithms and Applications for answering Ranked Queries using Ranked Views. VLDB Journal 13(1) (2004)
Ilyas, I., Aref, W., Elmagarmid, A.: Supporting top-k join queries in relational database. In: VLDB (2003)
Ilyas, I., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware query optimization. In: SIGMOD (2004)
Li, C., Chang, K., Ilyas, I., Song, S.: RankSQL: Query algebra and optimization for relational top-k queries. In: SIGMOD (2005)
Ramakrishnan, R., Gherke, J.: Database management systems, 3rd edn. McGraw-Hill, New York (2003)
Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Top-k Query Processing in Uncertain Databases. In: Proc. ICDE (2007)
Re, C., Dalvi, N.N., Suciu, D.: Efficient Top-k Query Evaluation on Probabilistic Data. In: Proc. ICDE (2007)
Theobald, M., Schenkel, R., Weikum, G.: An Efficient and Versatile Query Engine for TopX Search. In: VLDB (2005)
Yu, H., Hwang, S., Chang, K.: Enabling Soft Queries for Data Retrieval. Information Systems. Elsevier, Amsterdam (2007)
Xin, D., Han, J., Chang, K.: Progressive and Selective Merge: Computing Top-K with Ad-Hoc Ranking Functions. In: SIGMOD (2007)
Zhang, Z., Hwang, S., Chang, K., Wang, M., Lang, C., Chang, Y.: Boolean + Ranking: Querying a Database by K-Constrained Optimization. In: SIGMOD (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gurský, P., Vojtáš, P. (2008). On Top-k Search with No Random Access Using Small Memory. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds) Advances in Databases and Information Systems. ADBIS 2008. Lecture Notes in Computer Science, vol 5207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85713-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-85713-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85712-9
Online ISBN: 978-3-540-85713-6
eBook Packages: Computer ScienceComputer Science (R0)