Abstract
We present a concept for building behaviorally centered user profiles. The concept utilizes behavioral analytics of user interactions in web environments. User interactions are temporally segmented into elemental browsing units. The browsing segments permit identification of the essential navigational points as well as higher order abstractions. The profiles incorporate relevant metrics from three major domains: temporal, navigational, and abstractions. Temporal metrics focus on aspects of durations and delays between portions of human interactions. The navigational metrics target the initial, terminal, and single user actions. The abstraction metrics encompass elemental patterns of human browsing behavior and their interconnections. The profiling concept utilizes relatively simple analytic and statistical apparatus. It facilitates computational efficiency and scalability to large user domains.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baraglia, R., Silvestri, F.: Dynamic personalization of web sites without user intervention. Communications of the ACM 50, 63–67 (2007)
Mobasher, B.: Data mining for web personalization. In: Brusilovski, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 90–135. Springer, Heidelberg (2007)
Moe, W.W.: Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream. Journal of Consumer Psychology 13, 29–39 (2003)
Nasraoui, O., Soliman, M., Saka, E., Badia, A., Germain, R.: A web usage mining framework for mining evolving user profiles in dynamic web sites. IEEE Transactions on Knowledge and Data Engineering 20(2), 202–215 (2008)
Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovski, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 54–89. Springer, Heidelberg (2007)
Gasparetti, F., Micarelli, A.: Exploiting web browsing histories to identify user needs. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, New York, NY, USA, pp. 325–328 (2007)
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23, 103–145 (2005)
Anand, S.S., Kearney, P., Shapcott, M.: Generating semantically enriched user profiles for web personalization. ACM Transactions on Internet Technology 7(4), 22 (2007)
Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)
Géczy, P., Akaho, S., Izumi, N., Hasida, K.: Knowledge worker intranet behaviour and usability. Int. J. Business Intelligence and Data Mining 2, 447–470 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Géczy, P., Izumi, N., Akaho, S., Hasida, K. (2008). Web Behaviormetric User Profiling Concept. In: Psaila, G., Wagner, R. (eds) E-Commerce and Web Technologies. EC-Web 2008. Lecture Notes in Computer Science, vol 5183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85717-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-85717-4_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85716-7
Online ISBN: 978-3-540-85717-4
eBook Packages: Computer ScienceComputer Science (R0)