Abstract
The paper proposed to use a Recurrent Neural Network Model (RNNM) and a dynamic Backpropagation learning for centralized identification of an anaerobic digestion bioprocess, carried out in a fixed bed and a recirculation tank of a wastewater treatment system. The anaerobic digestion bioprocess represented a distributed parameter system, described by partial differential equations. The analytical model is simplified to a lumped ordinary system using the orthogonal collocation method, applied in three collocation points, generating data for the neural identification. The obtained neural state and parameter estimations are used to design an indirect sliding mode control of the plant. The graphical simulation results of the digestion wastewater treatment indirect control exhibited a good convergence and precise reference tracking.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boskovic, J.D., Narendra, K.S.: Comparison of Linear, Nonlinear, and Neural Network-Based Adaptive Controllers for a Class of Fed-Batch Fermentation Processes. Automatica 31(6), 817–840 (1995)
Haykin, S.: Neural Networks, a Comprehensive Foundation. Second Edition. Section 2.13, 84-89; Section 4.13, pp. 208–213. Prentice-Hall, Upper Saddle River (1999)
Bulsari, A., Palosaari, S.: Application of Neural Networks for System Identification of an Adsorption Column. Neural Computing and Applications 1, 160–165 (1993)
Deng, H., Li, H.X.: Hybrid Intelligence Based Modeling for Nonlinear Distributed Parameter Process with Applications to the Curing Process. IEEE Trans. on Systems, Man and Cybernetics 4, 3506–3511 (2003)
Deng, H., Li, H.X.: Spectral-Approximation-Based Intelligent Modeling for Distributed Thermal Processes. IEEE Transactions on Control Systems Technology 13, 686–700 (2005)
Gonzalez-Garcia, R., Rico-Martinez, R., Kevrekidis, I.: Identification of Distributed Parameter Systems: A Neural Net Based Approach. Computers and Chemical Engineering 22 (4-supl. 1), 965–968 (1998)
Padhi, R., Balakrishnan, S., Randolph, T.: Adaptive Critic based Optimal Neuro Control Synthesis for Distributed Parameter Systems. Automatica 37, 1223–1234 (2001)
Padhi, R., Balakrishnan, S.: Proper Orthogonal Decomposition Based Optimal Neurocontrol Synthesis of a Chemical Reactor Process Using Approximate Dynamic Programming. Neural Networks 16, 719–728 (2003)
Pietil, S., Koivo, H.N.: Centralized and Decentralized Neural Network Models for Distributed Parameter Systems. In: Proc. of the Symposium on Control, Optimization and Supervision, CESA 1996. IMACS Multi-conference on Computational Engineering in Systems Applications, pp. 1043–1048. IMACS Press, Lille (1996)
Baruch, I.S., Flores, J.M., Nava, F., Ramirez, I.R., Nenkova, B.: An Advanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. 1st Int. IEEE Symp. Intelligent Systems, Varna, Bulgaria, vol. 1, pp. 289–295 (2002)
Baruch, I.S., Georgieva, P., Barrera-Cortes, J., Feyo de Azevedo, S.: Adaptive Recurrent Neural Network Control of Biological Wastewater Treatment. International Journal of Intelligent Systems 20(2), 173–194 (2005)
Baruch, I.S., Hernandez, L.A., Barrera-Cortes, J.: Recurrent Neural Identification and Sliding Mode Adaptive Control of an Aerobic Fermentation Plant. Cientifica, ESIME-IPN 11(2), 55–62 (2007)
Baruch, I.S., Hernandez, L.A., Mariaca-Gaspar, C.R., Nenkova, B.: An Adaptive Sliding Mode Control with I-term Using Recurrent Neural Identifier. Cybernetics and Information Technologies 7(1), 21–32 (2007)
Aguilar-Garnica, E., Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V.: Interval Observer Design for an Anaerobic Digestion Process Described by a Distributed Parameter Model. In: Proc. of the Second International Meeting on Environmental Biotechnology and Engineering (2IMEBE), Mexico City, Mexico, paper 117, 26-29 Sept. 2006, pp. 1–16 (2006)
Bialecki, B., Fairweather, G.: Orthogonal Spline Collocation Methods for Partial Differential Equations. Journal of Computational and Applied Mathematics 128, 55–82 (2001)
Wan, E., Beaufays, F.: Diagrammatic Method for Deriving and Relating Temporal Neural Networks Algorithms. Neural Computations 8, 182–201 (1996)
Young, K.D., Utkin, V.I., Ozguner, U.: A Control Engineer’s Guide to Sliding Mode Control. IEEE Trans. on Control Systems Technology 7(3), 328–342 (1999)
Levent, A.: Higher Order Sliding Modes, Differentiation and Output Feedback Control. International Journal of Control 76(9/10), 924–941 (2003)
Eduards, C., Spurgeon, S.K., Hebden, R.G.: On the Design of Sliding Mode Output Feedback Controllers. International Journal of Control 76(9/10), 893–905 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baruch, I.S., Galvan-Guerra, R., Nenkova, B. (2008). Centralized Indirect Control of an Anaerobic Digestion Bioprocess Using Recurrent Neural Identifier. In: Dochev, D., Pistore, M., Traverso, P. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2008. Lecture Notes in Computer Science(), vol 5253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85776-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-85776-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85775-4
Online ISBN: 978-3-540-85776-1
eBook Packages: Computer ScienceComputer Science (R0)