Skip to main content

Centralized Indirect Control of an Anaerobic Digestion Bioprocess Using Recurrent Neural Identifier

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2008)

Abstract

The paper proposed to use a Recurrent Neural Network Model (RNNM) and a dynamic Backpropagation learning for centralized identification of an anaerobic digestion bioprocess, carried out in a fixed bed and a recirculation tank of a wastewater treatment system. The anaerobic digestion bioprocess represented a distributed parameter system, described by partial differential equations. The analytical model is simplified to a lumped ordinary system using the orthogonal collocation method, applied in three collocation points, generating data for the neural identification. The obtained neural state and parameter estimations are used to design an indirect sliding mode control of the plant. The graphical simulation results of the digestion wastewater treatment indirect control exhibited a good convergence and precise reference tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boskovic, J.D., Narendra, K.S.: Comparison of Linear, Nonlinear, and Neural Network-Based Adaptive Controllers for a Class of Fed-Batch Fermentation Processes. Automatica 31(6), 817–840 (1995)

    Article  MathSciNet  Google Scholar 

  2. Haykin, S.: Neural Networks, a Comprehensive Foundation. Second Edition. Section 2.13, 84-89; Section 4.13, pp. 208–213. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  3. Bulsari, A., Palosaari, S.: Application of Neural Networks for System Identification of an Adsorption Column. Neural Computing and Applications 1, 160–165 (1993)

    Article  Google Scholar 

  4. Deng, H., Li, H.X.: Hybrid Intelligence Based Modeling for Nonlinear Distributed Parameter Process with Applications to the Curing Process. IEEE Trans. on Systems, Man and Cybernetics 4, 3506–3511 (2003)

    Google Scholar 

  5. Deng, H., Li, H.X.: Spectral-Approximation-Based Intelligent Modeling for Distributed Thermal Processes. IEEE Transactions on Control Systems Technology 13, 686–700 (2005)

    Article  Google Scholar 

  6. Gonzalez-Garcia, R., Rico-Martinez, R., Kevrekidis, I.: Identification of Distributed Parameter Systems: A Neural Net Based Approach. Computers and Chemical Engineering 22 (4-supl. 1), 965–968 (1998)

    Article  Google Scholar 

  7. Padhi, R., Balakrishnan, S., Randolph, T.: Adaptive Critic based Optimal Neuro Control Synthesis for Distributed Parameter Systems. Automatica 37, 1223–1234 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Padhi, R., Balakrishnan, S.: Proper Orthogonal Decomposition Based Optimal Neurocontrol Synthesis of a Chemical Reactor Process Using Approximate Dynamic Programming. Neural Networks 16, 719–728 (2003)

    Article  Google Scholar 

  9. Pietil, S., Koivo, H.N.: Centralized and Decentralized Neural Network Models for Distributed Parameter Systems. In: Proc. of the Symposium on Control, Optimization and Supervision, CESA 1996. IMACS Multi-conference on Computational Engineering in Systems Applications, pp. 1043–1048. IMACS Press, Lille (1996)

    Google Scholar 

  10. Baruch, I.S., Flores, J.M., Nava, F., Ramirez, I.R., Nenkova, B.: An Advanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. 1st Int. IEEE Symp. Intelligent Systems, Varna, Bulgaria, vol. 1, pp. 289–295 (2002)

    Google Scholar 

  11. Baruch, I.S., Georgieva, P., Barrera-Cortes, J., Feyo de Azevedo, S.: Adaptive Recurrent Neural Network Control of Biological Wastewater Treatment. International Journal of Intelligent Systems 20(2), 173–194 (2005)

    Article  MATH  Google Scholar 

  12. Baruch, I.S., Hernandez, L.A., Barrera-Cortes, J.: Recurrent Neural Identification and Sliding Mode Adaptive Control of an Aerobic Fermentation Plant. Cientifica, ESIME-IPN 11(2), 55–62 (2007)

    Google Scholar 

  13. Baruch, I.S., Hernandez, L.A., Mariaca-Gaspar, C.R., Nenkova, B.: An Adaptive Sliding Mode Control with I-term Using Recurrent Neural Identifier. Cybernetics and Information Technologies 7(1), 21–32 (2007)

    MathSciNet  Google Scholar 

  14. Aguilar-Garnica, E., Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V.: Interval Observer Design for an Anaerobic Digestion Process Described by a Distributed Parameter Model. In: Proc. of the Second International Meeting on Environmental Biotechnology and Engineering (2IMEBE), Mexico City, Mexico, paper 117, 26-29 Sept. 2006, pp. 1–16 (2006)

    Google Scholar 

  15. Bialecki, B., Fairweather, G.: Orthogonal Spline Collocation Methods for Partial Differential Equations. Journal of Computational and Applied Mathematics 128, 55–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wan, E., Beaufays, F.: Diagrammatic Method for Deriving and Relating Temporal Neural Networks Algorithms. Neural Computations 8, 182–201 (1996)

    Article  Google Scholar 

  17. Young, K.D., Utkin, V.I., Ozguner, U.: A Control Engineer’s Guide to Sliding Mode Control. IEEE Trans. on Control Systems Technology 7(3), 328–342 (1999)

    Article  Google Scholar 

  18. Levent, A.: Higher Order Sliding Modes, Differentiation and Output Feedback Control. International Journal of Control 76(9/10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  19. Eduards, C., Spurgeon, S.K., Hebden, R.G.: On the Design of Sliding Mode Output Feedback Controllers. International Journal of Control 76(9/10), 893–905 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Danail Dochev Marco Pistore Paolo Traverso

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baruch, I.S., Galvan-Guerra, R., Nenkova, B. (2008). Centralized Indirect Control of an Anaerobic Digestion Bioprocess Using Recurrent Neural Identifier. In: Dochev, D., Pistore, M., Traverso, P. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2008. Lecture Notes in Computer Science(), vol 5253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85776-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85776-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85775-4

  • Online ISBN: 978-3-540-85776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics