Skip to main content

Selected Ideas Used for Decidability and Undecidability of Bisimilarity

  • Conference paper
Developments in Language Theory (DLT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5257))

Included in the following conference series:

Abstract

The paper tries to highlight some crucial ideas appearing in the decidability and undecidability proofs for the bisimilarity problem on models originating in language theory, like context-free grammars and pushdown automata. In particular, it focuses on the method of finite bases of bisimulations in the case of decidability and the method of “Defender’s forcing” in the case of undecidability. An intent was to write an easy-to-read article in a slightly informal way, which should nevertheless convey the basic ideas with sufficient precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 545–623. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  3. Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: Techniques and results. Theory and Practice of Logic Programming 6(3), 227–264 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Computer Science, The Challenge of the New Century. Formal Models and Semantics, vol. 2, pp. 337–350. World Scientific Publishing Co., Singapore (2004), http://www.brics.dk/~srba/roadmap/

    Google Scholar 

  5. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Science 106(1), 61–86 (1992)

    Article  MathSciNet  Google Scholar 

  6. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86(1), 43–68 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Computing 16(6), 973–989 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state systems. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 391–424. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  9. Baeten, J., Bergstra, J., Klop, J.: Decidability of bisimulation equivalence for processes generating context-free languages. Journal of the ACM 40(3), 653–682 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for all context-free processes. Information and Computation 121, 143–148 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary context-free processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)

    Google Scholar 

  12. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 158, 143–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed context-free processes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 646–657. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation is decidable for all basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)

    Google Scholar 

  15. Jančar, P.: Strong bisimilarity on Basic Parallel Processes is PSPACE-complete. In: Proc. 18th LiCS, pp. 218–227. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  16. Srba, J.: Strong bisimilarity of simple process algebras: Complexity lower bounds. Acta Informatica 39, 469–499 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation equivalence of normed Basic Parallel Processes. Mathematical Structures in Computer Science 6, 251–259 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jančar, P., Kot, M.: Bisimilarity on normed Basic Parallel Processes can be decided in time O(n3). In: Bharadwaj, R. (ed.) Proceedings of the Third International Workshop on Automated Verification of Infinite-State Systems - AVIS 2004 (2004)

    Google Scholar 

  19. Sénizergues, G.: The bisimulation problem for equational graphs of finite outdegree. SIAM Journal on Computing 34(5), 1025–1106 (2005); (a preliminary version appeared at FOCS 1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sénizergues, G.: L(A)=L(B)? Decidability results from complete formal systems. Theoretical Computer Science 251(1-2), 1–166 (2001); (a preliminary version appeared at ICALP 1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stirling, C.: Decidability of DPDA equivalence. Theoretical Computer Science  255(1-2), 1–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stirling, C.: Decidability of bisimulation equivalence for pushdown processes. Research Report EDI-INF-RR-0005, School of Informatics, Edinburgh University, The latest version is downloadable from the author’s home-page (January 2000)

    Google Scholar 

  23. Sénizergues, G.: L(A)=L(B)? a simplified decidability proof. Theoretical Computer Science 281(1-2), 555–608 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Jančar, P., Srba, J.: Undecidability of bisimilarity by defender’s forcing. Journal of the ACM 55(1), 1–26 (2008)

    Article  MathSciNet  Google Scholar 

  26. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Černá, I., Křetínský, M., Kučera, A.: Comparing expressibility of normed BPA and normed BPP processes. Acta Informatica 36, 233–256 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jančar, P., Kot, M., Sawa, Z.: Normed BPA vs. normed BPP revisited. In: Proceedings of CONCUR 2008. LNCS. Springer, Heidelberg (to appear, 2008)

    Google Scholar 

  29. Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP processes. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 159–173. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Ito Masafumi Toyama

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jančar, P. (2008). Selected Ideas Used for Decidability and Undecidability of Bisimilarity. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85780-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85779-2

  • Online ISBN: 978-3-540-85780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics