Abstract
The paper tries to highlight some crucial ideas appearing in the decidability and undecidability proofs for the bisimilarity problem on models originating in language theory, like context-free grammars and pushdown automata. In particular, it focuses on the method of finite bases of bisimulations in the case of decidability and the method of “Defender’s forcing” in the case of undecidability. An intent was to write an easy-to-read article in a slightly informal way, which should nevertheless convey the basic ideas with sufficient precision.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 545–623. Elsevier Science, Amsterdam (2001)
Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: Techniques and results. Theory and Practice of Logic Programming 6(3), 227–264 (2006)
Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Computer Science, The Challenge of the New Century. Formal Models and Semantics, vol. 2, pp. 337–350. World Scientific Publishing Co., Singapore (2004), http://www.brics.dk/~srba/roadmap/
Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Science 106(1), 61–86 (1992)
Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86(1), 43–68 (1990)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Computing 16(6), 973–989 (1987)
Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state systems. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 391–424. Elsevier Science, Amsterdam (2001)
Baeten, J., Bergstra, J., Klop, J.: Decidability of bisimulation equivalence for processes generating context-free languages. Journal of the ACM 40(3), 653–682 (1993)
Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for all context-free processes. Information and Computation 121, 143–148 (1995)
Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary context-free processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)
Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 158, 143–159 (1996)
Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed context-free processes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 646–657. Springer, Heidelberg (2006)
Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation is decidable for all basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)
Jančar, P.: Strong bisimilarity on Basic Parallel Processes is PSPACE-complete. In: Proc. 18th LiCS, pp. 218–227. IEEE Computer Society, Los Alamitos (2003)
Srba, J.: Strong bisimilarity of simple process algebras: Complexity lower bounds. Acta Informatica 39, 469–499 (2003)
Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation equivalence of normed Basic Parallel Processes. Mathematical Structures in Computer Science 6, 251–259 (1996)
Jančar, P., Kot, M.: Bisimilarity on normed Basic Parallel Processes can be decided in time O(n3). In: Bharadwaj, R. (ed.) Proceedings of the Third International Workshop on Automated Verification of Infinite-State Systems - AVIS 2004 (2004)
Sénizergues, G.: The bisimulation problem for equational graphs of finite outdegree. SIAM Journal on Computing 34(5), 1025–1106 (2005); (a preliminary version appeared at FOCS 1998)
Sénizergues, G.: L(A)=L(B)? Decidability results from complete formal systems. Theoretical Computer Science 251(1-2), 1–166 (2001); (a preliminary version appeared at ICALP 1997)
Stirling, C.: Decidability of DPDA equivalence. Theoretical Computer Science 255(1-2), 1–31 (2001)
Stirling, C.: Decidability of bisimulation equivalence for pushdown processes. Research Report EDI-INF-RR-0005, School of Informatics, Edinburgh University, The latest version is downloadable from the author’s home-page (January 2000)
Sénizergues, G.: L(A)=L(B)? a simplified decidability proof. Theoretical Computer Science 281(1-2), 555–608 (2002)
Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)
Jančar, P., Srba, J.: Undecidability of bisimilarity by defender’s forcing. Journal of the ACM 55(1), 1–26 (2008)
Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)
Černá, I., Křetínský, M., Kučera, A.: Comparing expressibility of normed BPA and normed BPP processes. Acta Informatica 36, 233–256 (1999)
Jančar, P., Kot, M., Sawa, Z.: Normed BPA vs. normed BPP revisited. In: Proceedings of CONCUR 2008. LNCS. Springer, Heidelberg (to appear, 2008)
Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP processes. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 159–173. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jančar, P. (2008). Selected Ideas Used for Decidability and Undecidability of Bisimilarity. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-85780-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85779-2
Online ISBN: 978-3-540-85780-8
eBook Packages: Computer ScienceComputer Science (R0)