Abstract
A stereo vision based terrain traversability estimation method for offroad mobile robots is presented. The method models surrounding terrain using either sloped planes or a digital elevation model, based on the availability of suitable input data. This combination of two surface modeling techniques increases range and information content of the resulting terrain map.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cremean, L., et al.: Alice: An information-rich autonomous vehicle for high-speed desert navigation: Field reports. J. Robot. Syst. 23(9), 777–810 (2006)
Weingarten, J., Gruener, G., Siegwart, R.: A fast and robust 3d feature extraction algorithm for structured environment reconstruction. In: Proceedings of the 11th International Conference on Advanced Robotics (ICAR) (July 2003)
Vandapel, N., et al.: Natural terrain classification using 3-d ladar data. In: IEEE International Conference on Robotics and Automation (ICRA) (2004)
Howard, A., et al.: Towards learned traversability for robot navigation: From underfoot to the far field. Journal of Field Robotics 23 (2006)
Kim, D., Oh, S.M., Rehg, J.M.: Traversability classification for UGV navigation: A comparison of patch and superpixel representations. In: IROS 2007 (2007)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (1994)
Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker: Description of the algorithm. Intel Corp., Microprocessor Research Labs (2002)
Schäfer, H., et al.: Ravon - a robust autonomous vehicle for off-road navigation. In: European Land Robot Trial (May 2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Braun, T., Bitsch, H., Berns, K. (2008). Visual Terrain Traversability Estimation Using a Combined Slope/Elevation Model. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds) KI 2008: Advances in Artificial Intelligence. KI 2008. Lecture Notes in Computer Science(), vol 5243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85845-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-85845-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85844-7
Online ISBN: 978-3-540-85845-4
eBook Packages: Computer ScienceComputer Science (R0)