Skip to main content

A Neural Network Based Regression Approach for Recognizing Simultaneous Speech

  • Conference paper
Machine Learning for Multimodal Interaction (MLMI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5237))

Included in the following conference series:

  • 900 Accesses

Abstract

This paper presents our approach for automatic speech recognition (ASR) of overlapping speech. Our system consists of two principal components: a speech separation component and a feature estmation component. In the speech separation phase, we first estimated the speaker’s position, and then the speaker location information is used in a GSC-configured beamformer with a minimum mutual information (MMI) criterion, followed by a Zelinski and binary-masking post-filter, to separate the speech of different speakers. In the feature estimation phase, the neural networks are trained to learn the mapping from the features extracted from the pre-separated speech to those extracted from the close-talking microphone speech signal. The outputs of the neural networks are then used to generate acoustic features, which are subsequently used in acoustic model adaptation and system evaluation. The proposed approach is evaluated through ASR experiments on the PASCAL Speech Separation Challenge II (SSC2) corpus. We demonstrate that our system provides large improvements in recognition accuracy compared with a single distant microphone case and the performance of ASR system can be significantly improved both through the use of MMI beamforming and feature mapping approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haykin, S.: Unsupervised adaptive filtering. Blind source seperation, vol. 1. Wiley, New York (2000)

    Google Scholar 

  2. Frost, O.L.: An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Article  Google Scholar 

  3. Griffiths, L.J., Jim, C.W.: An Alternative Approach to Linearly Constrained Adaptive Beamforming. IEEE Trans. on Antennas and Propagation AP-30(1), 27–34 (1982)

    Article  Google Scholar 

  4. Moore, D., McCowan, I.: Microphone array speech recognition: Experiments on overlapping speech in meetings. In: Proc. ICASSP, pp. 497–500 (2003)

    Google Scholar 

  5. Stolcke, A., et al.: The SRI-ICSI Spring 2007 Meeting and Lecture Recognition System. LNCS. Springer, Heidelberg (2007)

    Google Scholar 

  6. Cetin, O., Shriberg, E.: Speaker overlaps and ASR errors in meetings: Effects before, during, and after the overlap. In: Proc. ICASSP, vol. 1, pp. 357–360 (2006)

    Google Scholar 

  7. Hain, T., Burget, L., Dines, J., Garau, G., Wan, V., Karafiat, M., Vepa, J., Lincoln, M.: The AMI system for the transcription of speech in meetings. In: Proc. ICASSP, Honolulu, Hawaii (2007)

    Google Scholar 

  8. Li, W., Magimai.-Doss, M., Dines, J., Bourlard, H.: MLP-based log spectral energy mapping for robust overlapping speech recognition, IDIAP Technical Report, 07-54 (2007)

    Google Scholar 

  9. Young, S., et al.: The HTK Book, Version 3.4., http://htk.eng.cam.ac.uk/docs/docs.shtml

  10. Li, W., Dines, J., Magimai.-Doss, M., Bourlard, H.: Neural Network based Regression for Robust Overlapping Speech Recognition using Microphone Arrays, IDIAP Technical Report 08-09 (2008)

    Google Scholar 

  11. Lincoln, M., McCowan, I., Vepa, I., Maganti, H.K.: The multichannel Wall Street Journal audio visual corpus ( mc-wsj-av): Specification and initial experiments. In: Proc. ASRU, pp. 357–362 (2005)

    Google Scholar 

  12. Gehrig, T., McDonough, J.: Tracking and far-field speech recognition for multiple simultaneous speakers. In: Proc. the Workshop on Machine Learning and Multimodal Interaction (September 2006)

    Google Scholar 

  13. Kumatani, K., Gehrig, T., Mayer, U., Stoimenov, E., McDonough, J., Wölfel, M.: Adaptive beamforming with a minimum mutual information criterion. IEEE Transactions on Audio, Speech and Language Processing 15, 2527–2541 (2007)

    Article  Google Scholar 

  14. Buchner, H., Aichner, R., Kellermann, W.: Blind source seperation for convolutive mixtures: A unified treatment. In: Audio Signal Processing for Next-Generation Multimedia Communication Systems, pp. 255–289. Kluwer Academic, Boston (2004)

    Chapter  Google Scholar 

  15. Van Trees, H.L.: Optimum Array Processing. Wiley-Interscience, New York (2002)

    Google Scholar 

  16. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, PhD Thesis. Harvard University, Cambridge, MA (1974)

    Google Scholar 

  17. Sorensen, H.B.D.: A cepstral noise reductionmulti-layer neural network. In: Proc. ICASSP, vol. 2, pp. 933–936 (1991)

    Google Scholar 

  18. Yuk, D., Flanagan, J.: Telephone speech recognition using neural networks and hiddenMarkov models. In: Proc. ICASSP, vol. 1, pp. 157–160 (1999)

    Google Scholar 

  19. Che, C., Lin, Q., Pearson, J., de Vries, B., Flanagan, J.: Microphone arrays and neural networks for robust speech recognition. In: Proc. the workshop on Human Language Technology, pp. 342–347 (1994)

    Google Scholar 

  20. Uwe Simmer, K., Bitzer, J., Marro, C.: Post-filtering techniques. In: Brandstein, M., Ward, D. (eds.) Microphone Arrays, ch. 3, pp. 39–60. Springer, Heidelberg (2001)

    Google Scholar 

  21. McCowan, I., Hari-Krishna, M., Gatica-Perez, D., Moore, D., Ba, S.: Speech Acquisition in Meetings with an Audio-Visual Sensor Array. In: Proc. the IEEE International Conference on Multimedia and Expo (ICME) (July 2005)

    Google Scholar 

  22. Rabiner, L.R., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  23. Lin, Q., Che, C., Yuk, D.-S., Jin, L., de Vries, B., Pearson, J., Flanagan, J.: Robust distant-talking speech recognition. In: Proc. ICASSP, vol. 1, pp. 21–24 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrei Popescu-Belis Rainer Stiefelhagen

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Kumatani, K., Dines, J., Magimai-Doss, M., Bourlard, H. (2008). A Neural Network Based Regression Approach for Recognizing Simultaneous Speech. In: Popescu-Belis, A., Stiefelhagen, R. (eds) Machine Learning for Multimodal Interaction. MLMI 2008. Lecture Notes in Computer Science, vol 5237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85853-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85853-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85852-2

  • Online ISBN: 978-3-540-85853-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics