Abstract
We improve our proposal of a new variant of the McEliece cryptosystem based on QC-LDPC codes. The original McEliece cryptosystem, based on Goppa codes, is still unbroken up to now, but has two major drawbacks: long key and low transmission rate. Our variant is based on QC-LDPC codes and is able to overcome such drawbacks, while avoiding the known attacks. Recently, however, a new attack has been discovered that can recover the private key with limited complexity. We show that such attack can be avoided by changing the form of some constituent matrices, without altering the remaining system parameters. We also propose another variant that exhibits an overall increased security level. We analyze the complexity of the encryption and decryption stages by adopting efficient algorithms for processing large circulant matrices. The Toom-Cook algorithm and the short Winograd convolution are considered, that give a significant speed-up in the cryptosystem operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 114–116 (1978)
Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24, 384–386 (1978)
Lee, P., Brickell, E.: An observation on the security of McEliece’s public-key cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988)
Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inform. Theory 44, 367–378 (1998)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Contr. and Inform. Theory 15, 159–166 (1986)
Li, Y.X., Deng, R., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. Inform. Theory 40, 271–273 (1994)
Riek, J.: Observations on the application of error correcting codes to public key encryption. In: Proc. IEEE International Carnahan Conference on Security Technology. Crime Countermeasures, Lexington, KY, USA, October 1990, pp. 15–18 (1990)
Richardson, T., Urbanke, R.: The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inform. Theory 47, 599–618 (2001)
Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In: Proc. IEEE ISIT 2007, Nice, France, June 2007, pp. 2591–2595 (2007)
Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: Proc. IEEE ISIT 2000, Sorrento, Italy, June 2000, p. 215 (2000)
Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. In: Proc. First International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China (April 2008)
Gaborit, P.: Shorter keys for code based cryptography. In: Proc. Int. Workshop on Coding and Cryptography WCC, Bergen, Norway, March 2005, pp. 81–90 (2005)
Richardson, T., Urbanke, R.: Efficient encoding of low-density parity-check codes. IEEE Trans. Inform. Theory 47, 638–656 (2001)
Neal, R.M.: Faster encoding for low-density parity check codes using sparse matrix methods (1999), http://www.cs.toronto.edu/~radford/ftp/ima-part1.pdf .
Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)
Baldi, M., Chiaraluce, F.: LDPC Codes in the McEliece Cryptosystem (September 2007), http://arxiv.org/abs/0710.0142
Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet Physics Doklady 7, 595–596 (1963)
Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics Doklady 3, 714–716 (1963)
Cook, S.A.: On the minimum computation time of functions. PhD thesis, Dept. of Mathematics, Harvard University (1966)
Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: Towards optimal Toom-Cook matrices. In: Brown, C.W. (ed.) Proceedings of the ISSAC 2007 Conference, July 2007, pp. 17–24. ACM Press, New York (2007)
Cantor, D.G.: On arithmetical algorithms over finite fields. Journal of Combinatorial Theory A 50, 285–300 (1989)
Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Informatica 7, 395–398 (1977)
Brent, R.P., Zimmermann, P., Gaudry, P., Thomé, E.: Faster multiplication in GF(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 153–166. Springer, Heidelberg (2008)
Bodrato, M.: Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 116–133. Springer, Heidelberg (2007)
Jebelean, T.: An algorithm for exact division. Journal of Symbolic Computation 15, 169–180 (1993)
Winograd, S.: Arithmetic Complexity of Computations. CBMS-NSF Regional Conference Series in Mathematics, vol. 33. SIAM, Philadelphia (1980)
Micciancio, D.: Generalized compact knapsacks, cyclic lattices and efficient one-way functions. Computational Complexity 16, 365–411 (2007)
Silverman, J.H.: High-speed multiplication of (truncated) polynomials. Technical Report 10, NTRU CryptoLab (January 1999)
Weimerskirch, A., Stebila, D., Shantz, S.C.: Generic GF(2) arithmetic in software and its application to ECC. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 79–92. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baldi, M., Bodrato, M., Chiaraluce, F. (2008). A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds) Security and Cryptography for Networks. SCN 2008. Lecture Notes in Computer Science, vol 5229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85855-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-85855-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85854-6
Online ISBN: 978-3-540-85855-3
eBook Packages: Computer ScienceComputer Science (R0)