Skip to main content

Evolving Variability-Tolerant CMOS Designs

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

As the size of CMOS devices is approaching the atomic level, the increasing intrinsic device variability is leading to higher failure rates in conventional CMOS designs. In this paper, two approaches are proposed for evolving unconventional variability-tolerent CMOS designs: one uses a simple Genetic Algorithm, whilst the other uses Cartesian Genetic Programming. Both approaches successfully evolve unconventional designs for logic gates, whilst an inverter design also shows signs of variability-tolerance.

The authors would like to thank all partners of the nano-CMOS project, especially the DMG at the University of Glasgow for their Randomspice program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38 (1965)

    Google Scholar 

  2. Bohr, M.T., et al.: The high-k solution. IEEE Spectrum 10 (2007)

    Google Scholar 

  3. Bernstein, K., et al.: High-performance cmos variability in the 65-nm regime and beyond. Advanced Silicon Technology 50 (2006)

    Google Scholar 

  4. Takahashi, E., Murakawa, M., Kasai, Y., Higuchi, T.: Power dissipation reductions with genetic algortihms. In: Proc. of NASA/DOD EH (2005)

    Google Scholar 

  5. Salomon, R., Sill, F.: High-speed, low-leakage integrated circuits: An evolutionary algorithm perspective. Journal of Systems Architecture 53, 321–327 (2007)

    Article  Google Scholar 

  6. Noren, K.V., Ross, J.E.: Analog circuit design using genetic algorithms. In: Second Online Symposium for Electronics Engineers (2001)

    Google Scholar 

  7. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits - part I. Genetic Programming and Evolvable Machines 1, 8–35 (2000)

    Google Scholar 

  8. Streeter, M.J., Keane, M.A., Koza, J.R.: Automatic synthesis using GP of both the topology and sizing for five post-2000 patented analog and mixed-analog digital circuits. In: Southwest Symposium on Mixed-Signal Design (2003)

    Google Scholar 

  9. Djupdal, A., Haddow, P.C.: Evolving efficient redundancy by exploiting the analogue nature of CMOS transistors. In: CIRAS (2007)

    Google Scholar 

  10. Streetman, B.G., Banerjee, S.: Solid State Electronic Devices. Prentice-Hall, Englewood Cliffs (2000)

    Google Scholar 

  11. Wyon, C.: Future technology for advanced mos devices. Nuclear Instruments and Methods in Physics Research B 186, 380–391 (2002)

    Article  Google Scholar 

  12. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub 50 nm mosfets: a statistical 3D ’atomistic’ simulation study. Nanotechnology 10, 153–158 (1999)

    Article  Google Scholar 

  13. Asenov, A.: Variability in the next generation cmos technologies and impact on design. In: International Conference of CMOS Variability (2007)

    Google Scholar 

  14. Bernstein, J.B., others,: Electronic circuit reliability modeling. Microelectronics Reliability 46, 1957–1979 (2006)

    Article  Google Scholar 

  15. Rubio, J., et al.: Physically nbased modelling of damage, amorphization, and recrystallization for predictive device-size process simulation. Materials Science and Engineering B 114-115, 151–155 (2004)

    Article  Google Scholar 

  16. Mizuno, M., De, V. (eds.): Proc. of VLSI Circuits Short Course Program, Design for Variability in Logic, Memory and Microprocessor, Kyoto, Japan (2007)

    Google Scholar 

  17. Moroz, V.: Design for manufacturability: OPC and stress variations. In: International Conference on CMOS Variability (2007)

    Google Scholar 

  18. Eccleston, W.: The effect of polysilicon grain boundaries on mos based devices. Microelectronic Engineering 48, 105–108 (1999)

    Article  Google Scholar 

  19. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proc. of GECCO (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walker, J.A., Hilder, J.A., Tyrrell, A.M. (2008). Evolving Variability-Tolerant CMOS Designs. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics