Skip to main content

A Stepwise Dimension Reduction Approach to Evolutionary Design of Relative Large Combinational Logic Circuits

  • Conference paper
Book cover Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

In this paper, a stepwise dimension reduction (SDR) approach to evolutionary design of relatively large combinational logic circuits is proposed. The proposed method divides the whole circuit into several layers. As for a circuit with one output, the number of input combinations is expected to be reduced layer-by-layer. The current layer’s outputs are the next layer’s inputs. All layers are evolved separately one after another, and assembled to form a final solution. The experimental results of SDR on parities, multipliers and circuits taken from MCNC library are comparable with those of GDD. Especially, the 19-parity circuit can be evolved successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao, X., Higuichi, T.: Promises and Challenges of Evolvable Hardware. IEEE Transactions On Systems Man and Cybernetics-Part C: Applications and Reviews 29(1), 87–97 (1999)

    Article  Google Scholar 

  2. Stomeo, E., Kalganova, T., Lambert, C.: Generalized Disjunction Decomposition for Evolvable Hardware. IEEE Transactions on Systems, Man and Cybernetics, Part B 36(5), 1024–1043 (2006)

    Article  Google Scholar 

  3. Miller, J., Job, D.: Principles in the Evolutionary Design of Digital Circuits - Part I. Genetic Programming and Evolvable Machines 1(1), 7–35 (2000)

    Article  MATH  Google Scholar 

  4. Higuchi, T.: Evolvable Hardware and It’s Application to Pattern Recognition and Fault-Tolerant Systems. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS, vol. 1062, pp. 118–135. Springer, Heidelberg (1996)

    Google Scholar 

  5. Schnier, T., Yao, X.: Using Negative Correlation to Evolve Fault-Tolerant Circuits. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 213–220. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Vassilev, V., Miller, J.: Scalability Problems of Digital Circuit Evolution Evolvability and Efficient Designs. In: Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 55–64. IEEE, Los Alamitos (2000)

    Chapter  Google Scholar 

  7. Gordon, T.G.W., Bentley, P.J.: Development Brings Scalability to Hardware Evolution. In: Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), pp. 272–279. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  8. Sekanina, L.: Evolutionary Design of Digital Circuits: Where Are Current Limits? In: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006), Istanbul, Turkey, pp. 171–178. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  9. Torresen, J.: A Divide-and-Conquer Approach to Evolvable Hardware. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 57–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Higuchi, T.: Evlovable Hardware at Function Level. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 187–192 (1997)

    Google Scholar 

  11. Kalganova, T.: Bidirectional Incremental Evolution in Extrinsic Evolvable Hardware. In: Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware (EH 2000), Palo Alto, CA, USA, pp. 65–74. IEEE Computer Society Press, Los Alamitos (2000)

    Chapter  Google Scholar 

  12. Yang, S.: Logic Synthesis and Optimization. Benchmarks, Version 3.0, Microelectronics Center of North Carolina (1991)

    Google Scholar 

  13. Harik, G., Lobo, F., Goldberg, D.: The Compact Genetic Algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287–297 (1999)

    Article  Google Scholar 

  14. Sakanashi, H., Salami, M., Iwata, M., Nakaya, S., Yamauchi, T., Inuo, T., Kajihara, N., Higuchi, T.: Evolvable Hardware Chip for High Precision Printer Image Compression. In: The 15th National Conference on Artificial Intelligence, Madison, Wisconsin, pp. 486–491 (1998)

    Google Scholar 

  15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)

    MATH  Google Scholar 

  16. Araujo, S., Mesquita, A., Pedroza, A.: Using Genetic Programming and High Level Synthesis to Design Optimized Datapath. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 434–445. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Bäck, T., Hoffmeister, F., Schwefel, H.P.: A Survey of Evolutionary Strategies. In: Proceedings of the 4th International Conference on Genetic Algorithms, San Francisco, CA, pp. 2–9 (1991)

    Google Scholar 

  18. Stomeo, E., Kalganova, T., Lambert, C.: On Evolution of Relatively Large Combinational Logic Circuits. In: Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware, pp. 59–66. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  19. Miller, T.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Google Scholar 

  20. Stomeo, E., Kalganova, T., Lambert, C.: A Novel Genetic Algorithm for Evolvable Hardware. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 441–448. IEEE Computer Society Press, Canada (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Z., Luo, W., Wang, X. (2008). A Stepwise Dimension Reduction Approach to Evolutionary Design of Relative Large Combinational Logic Circuits. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics