Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 49))

  • 712 Accesses

Summary

In this study we analyze microarray data sets which monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that matrix decomposition techniques are able to identify relevant signatures in the deduced matrices and extract marker genes from these gene expression profiles. With these marker genes corresponding test data sets can then easily be classified into related diagnostic categories. The latter correspond to either monocytes vs macrophages or healthy vs Niemann Pick C diseased patients. Our results demonstrate that these methods are able to identify suitable marker genes which can be used to classify the type of cell lines investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brunet, J.-P., Tamayo, P., Golub, T., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. PNAS 101, 4164–4169 (2004)

    Article  Google Scholar 

  2. Cardoso, J.-F., Souloumiac, A.: Blind beamformimg for non-gaussian signals. IEEE Proc. F140(6), 362–370 (1993)

    Google Scholar 

  3. Cardoso, J.-F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM Journal Mat. Anal. Appl. 17(1), 161–164 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kuo, B.C., Chang, K.Y.: Feature extractions for small sample size classification problem. IEEE Trans. Geoscience Remote Sensing 45, 756–764 (2007)

    Article  Google Scholar 

  5. Lee, S.-I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology 4, R76.1–R76.21 (2003)

    Article  Google Scholar 

  6. Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.: Learning spatially localized, parts-based representation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1 (2001)

    Google Scholar 

  7. Lutter, D., Ugocsai, P., Grandl, M., Orso, E., Theis, F.J., Lang, E.W., Schmitz, G.: Analysing M-CSF dependent monocyte/macrophage differentiation and meta-clustering with independent component analysis derived expression modes. BMC Bioinformatics 9, 100 (2008)

    Article  Google Scholar 

  8. Schachtner, R., Lutter, D., Theis, F.J., Lang, E.W., Tomé, A.M., Górriz-Saez, J., Puntonet, C.G.: Blind matrix decomposition techniques to identify marker genes from microarrays. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Spang, R., Zuzan, H., West, M., Nevins, J., Blanchette, C., Marks, J.R.: Prediction and uncertainty in the analysis of gene expression profiles. Silico Biology 2, 33–58 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Juan F. De Paz Miguel P. Rocha Florentino Fernández Riverola

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schachtner, R., Lutter, D., Tomé, A.M., Schmitz, G., Vilda, P.G., Lang, E.W. (2009). A Matrix Factorization Classifier for Knowledge-Based Microarray Analysis. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Fernández Riverola, F. (eds) 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008). Advances in Soft Computing, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85861-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85861-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85860-7

  • Online ISBN: 978-3-540-85861-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics