Summary
In this study we analyze microarray data sets which monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that matrix decomposition techniques are able to identify relevant signatures in the deduced matrices and extract marker genes from these gene expression profiles. With these marker genes corresponding test data sets can then easily be classified into related diagnostic categories. The latter correspond to either monocytes vs macrophages or healthy vs Niemann Pick C diseased patients. Our results demonstrate that these methods are able to identify suitable marker genes which can be used to classify the type of cell lines investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brunet, J.-P., Tamayo, P., Golub, T., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. PNAS 101, 4164–4169 (2004)
Cardoso, J.-F., Souloumiac, A.: Blind beamformimg for non-gaussian signals. IEEE Proc. F140(6), 362–370 (1993)
Cardoso, J.-F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM Journal Mat. Anal. Appl. 17(1), 161–164 (1996)
Kuo, B.C., Chang, K.Y.: Feature extractions for small sample size classification problem. IEEE Trans. Geoscience Remote Sensing 45, 756–764 (2007)
Lee, S.-I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology 4, R76.1–R76.21 (2003)
Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.: Learning spatially localized, parts-based representation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1 (2001)
Lutter, D., Ugocsai, P., Grandl, M., Orso, E., Theis, F.J., Lang, E.W., Schmitz, G.: Analysing M-CSF dependent monocyte/macrophage differentiation and meta-clustering with independent component analysis derived expression modes. BMC Bioinformatics 9, 100 (2008)
Schachtner, R., Lutter, D., Theis, F.J., Lang, E.W., Tomé, A.M., Górriz-Saez, J., Puntonet, C.G.: Blind matrix decomposition techniques to identify marker genes from microarrays. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666. Springer, Heidelberg (2007)
Spang, R., Zuzan, H., West, M., Nevins, J., Blanchette, C., Marks, J.R.: Prediction and uncertainty in the analysis of gene expression profiles. Silico Biology 2, 33–58 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schachtner, R., Lutter, D., Tomé, A.M., Schmitz, G., Vilda, P.G., Lang, E.W. (2009). A Matrix Factorization Classifier for Knowledge-Based Microarray Analysis. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Fernández Riverola, F. (eds) 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008). Advances in Soft Computing, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85861-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-85861-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85860-7
Online ISBN: 978-3-540-85861-4
eBook Packages: EngineeringEngineering (R0)