Skip to main content

Genetic Algorithms for the Synthesis and Integrated Design of Processes Using Advanced Control Strategies

  • Conference paper
International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008)

Part of the book series: Advances in Soft Computing ((AINSC,volume 50))

Abstract

This work presents a real-coded genetic algorithm to perform the synthesis and integrated design of an activated sludge process using and advanced Multivariable Model-based Predictive Controller (MPC). The process synthesis and design are carried out simultaneously with the MPC tuning to obtain the most economical plant which satisfies the controllability indices that measure the control performance (H∞ and l1 norms of different sensitivity functions of the system). The mathematical formulation results into a mixed-integer optimization problem with non-linear constraints. The quality of the solutions obtained evidence that real-coded genetic algorithms are a valid and practical alternative to deterministic optimization methods for such complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Copp, J.B.: The COST Simulation Benchmark: Description and Simulator Manual. Office for Official Publications of the European Community (2002)

    Google Scholar 

  2. Costa, L., Oliveira, P.: Evolutionary algorithms approach to the solution of mixed integer-non-linear programming problems. Comp. Chem. Eng. 25, 257 (2001)

    Article  Google Scholar 

  3. Elliott, L., Ingham, D., Kyne, A., Mera, N., Porkashanian, M., Whittaker, S.: Reaction mechanism reduction and optimization for modeling aviation fuel oxidation using standard and hybrid genetic algorithms. Comp. Chem. Eng. 30, 889–900 (2006)

    Article  Google Scholar 

  4. Francisco, M., Vega, P.: Diseño Integrado de procesos de depuración de aguas utilizando Control Predictivo Basado en Modelos. Rev. Iberoamericana de Automática e Informática Industrial 3(4), 88–98 (2006)

    Google Scholar 

  5. Gen, M., Chen, R.: Genetic algorithms and engineering optimisation. John Wiley and Sons, Chichester (2000)

    Google Scholar 

  6. Goldberg, D.F.: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  7. Kookos, I., Perkins, J.: An algorithm for simultaneous process design and control. Ind. Eng. Chem. Res. 40, 4079 (2001)

    Article  Google Scholar 

  8. Luyben, M., Floudas, C.: Analyzing the interaction of design and control–1. A multiobjective framework and application to binary distillation synthesis. Comp. Chem. Eng. 18, 933 (1994)

    Google Scholar 

  9. Maciejowsky, J.M.: Predictive Control with Constraints. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  10. Moreno, R., De Prada, C., Lafuente, J., Poch, M., Montague, G.: Non-linear predictive control of dissolved oxygen in the activated sludge process. In: IFAC BIO, vol. 2, pp. 289–298. Pergamon Press, Oxford (1992)

    Google Scholar 

  11. Revollar, S., Lamanna, R., Vega, P.: Algorithmic synthesis and integrated design for activated sludge processes using genetic algorithms. ESCAPE, Barcelona (2005)

    Google Scholar 

  12. Sakizlis, S., Perkins, J., Pistikopoulos, E.: Parametric controllers in simultaneous process and control design optimization. Ind. Eng. Chem. Res. 42, 4545–4563 (2003)

    Article  Google Scholar 

  13. Sakizlis, S., Perkins, J., Pistikopoulos, E.: Recent advances in optimization-based simultaneous process and control design. Comp. Chem. Eng. 28, 2069–2086 (2004)

    Article  Google Scholar 

  14. Summanwar, V., Jayaraman, V., Kulkarni, H., Kusumakar, H., Gupta, K., Rajesh, J.: Solution of constrained optimization problems by multiobjective genetic algorithm. Comp. Chem. Eng. 26, 1481–1492 (2002)

    Article  Google Scholar 

  15. Tlacuahuac-Flores, A., Biegler, L.: Integrated Control and Process Design During Optimal Polymer Grade Transitions Operations. Comp. Chem. Eng (in press, 2008)

    Google Scholar 

  16. Tsai, M., Chang, C.: Water usage and treatment network design using genetic algorithms. Ind. Eng. Chem. Res. 40, 4874 (2001)

    Article  Google Scholar 

  17. Vega, P., Francisco, M., Sanz, E.: Norm based approach for automatic tuning of Model Predictive Controllers. In: Proceedings of ECCE-6, Copenhague (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Sara Rodríguez James Llinas José M. Molina

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Revollar, S., Francisco, M., Vega, P., Lamanna, R. (2009). Genetic Algorithms for the Synthesis and Integrated Design of Processes Using Advanced Control Strategies. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85863-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85862-1

  • Online ISBN: 978-3-540-85863-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics