Abstract
Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Giráldez, J.I.: Modelo de toma de decisiones y aprendizaje en sistemas multiagente, Tesis para el grado de doctor en Informática, Universidad Politécnica de Madrid (1999)
Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, W., Chan, P.: JAM: Java Agents for meta-learning over distributed databases. In: Third International Conference in Knowledge Discovery and Data Mining (KDD 1997), Newport Beach, California (1997)
Barandela, R., Sánchez, J.S., Valdovinos, R.: New applications of ensembles of classifiers. Pattern Analysis and Applications 6(3), 245–256 (2003)
Prodromidis, A.L., Stolfo, S.J., Chan, P.: Advances of Distributed Data Mining. Kargupta, H., Chan, P. (eds.). AAAI press, Menlo Park (2000)
Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) First International Workshop on Multiple Classifier Systems. LNCS, pp. 1–15. Springer, New York (2000)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)
Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Langdom, W.B.: Genetic Programing for combining clasiffiers. Presented at GECCO 2001, pp. 66–73. Morgan Kaufmann, San Francisco (2001)
Hung-Ren Ko, A., Sabourin, R., Britto, A.: Evolving ensemble of classifiers in random subspace. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation GECCO 2006 (2006)
Gaya López, M.C., Giraldez Breton, J.I.: Experiments in Multi Agent Learning. In: Proceedings of the 3rd International Workshop on Hybrid Artificial Intelligence Systems HAIS 2008 (accepted for publication, 2008)
Mitchel, T.: Machine Learning. McGraw Hill, New York (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gaya, M.C., Giráldez, J.I. (2009). Techniques for Distributed Theory Synthesis in Multiagent Systems. In: Corchado, J.M., RodrÃguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-540-85863-8_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85862-1
Online ISBN: 978-3-540-85863-8
eBook Packages: EngineeringEngineering (R0)