
Collisions for RC4-Hash⋆,⋆⋆

Sebastiaan Indesteege1,2,⋆ ⋆ ⋆ and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
{sebastiaan.indesteege,bart.preneel}@esat.kuleuven.be

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. RC4-Hash is a variable digest length cryptographic hash
function based on the design of the RC4 stream cipher. In this paper, we
show that RC4-Hash is not collision resistant. Collisions for any digest
length can be found with an expected effort of less than 29 compression
function evaluations. This is extended to multicollisions for RC4-Hash.
Finding a set of 2k colliding messages has an expected cost of 27 + k · 28

compression function evaluations.

Key words: RC4-Hash, hash functions, collisions, multicollisions.

1 Introduction

Cryptographic hash functions have been receiving much attention from
the cryptologic community recently, as several of the widely used hash
functions like MD5, SHA-0 and SHA-1, have been broken, or at least
shown to be weaker than expected [3,9,10,11]. This is a motivation for
the design of new hash functions, based on different design principles.
One such proposal is RC4-Hash, which was introduced by Chang, Gupta
and Nandi [1] in 2006. The design is inspired by the RC4 stream cipher.
The latter was designed by Ron Rivest in 1987, but remained a trade
secret until it leaked out in 1994 [8]. The motivation for basing a hash
function design on RC4, which is well studied, is to be able to use existing
results on RC4 in the security analysis of RC4-Hash [1]. Concerning the
performance of RC4-Hash, the designers claim that SHA-1 is roughly 1.5
times faster than RC4-Hash [1].

We focus on the collision resistance of RC4-Hash. Informally, collision
resistance means that it should be hard to find two distinct messages

⋆ The final publication is available at www.springerlink.com.
⋆⋆ This work was supported in part by the IAP Programme P6/26 BCRYPT of the

Belgian State (Belgian Science Policy), and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

⋆ ⋆ ⋆ F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

http://dx.doi.org/10.1007/978-3-540-85886-7_25


m 6= m′ that hash to the same value, i.e., h(m) = h(m′). We show that
RC4-Hash is not collision resistant, and give a method to find colliding
message pairs with an expected time complexity of less than 29 compres-
sion function evaluations. We also extend this to multicollisions.

This paper is organised as follows. In Sect. 2, a short description of
the RC4-Hash family of cryptographic hash functions is given. Section 3
introduces two distinct methods to construct fixed points of the internal
state of RC4-Hash. This is then used in Sect. 4 to construct colliding
message pairs for RC4-Hash. In Sect. 5, extensions of the attack, as well
as ways to mitigate it, are discussed. Section 6 concludes.

2 Description of RC4-Hash

RC4-Hash follows the “wide pipe” hash function design principle pro-
posed by Lucks [7], which implies that the intermediate state size is
(much) larger than the digest size. More specifically, RC4-Hash consists
of a compression function C : {0, 1}w × {0, 1}m 7→ {0, 1}w, and an out-
put transformation gn : {0, 1}w 7→ {0, 1}n. The intermediate state size w

is (much) larger than the digest length n. The compression function C is
applied iteratively for every (padded) message block of length m, starting
from an initial value. Then, the output transformation g compresses the
large internal state down to the required digest length n.

In RC4-Hash, the intermediate state consists of an array S of 256 bytes
and a pointer into this array, denoted by j. The array S always represents
a permutation of the numbers 0 to 255. The size of the internal state is
thus log2(2

8!)+ 8 ≈ 1692 bits. The digest length is variable from 16 bytes
to 64 bytes, which is much shorter than the internal state size. The length
of the message blocks is fixed to 64 bytes.

Padding Rule. A message M is padded in the following way. The 8-bit bi-
nary representation of the digest length n (in bytes), bin8(n), is prepended
to the message. A single “1” bit, v “0” bits and the 64-bit binary represen-
tation of the original message length (in bits), bin64(|M |), are appended
to the message. The number v is the least non-negative integer such that
|M | + 73 + v ≡ 0 mod 512. This ensures that the padded message length
is an integer multiple of 512 bits, the message block length. Hence, the
padded message can be split into t blocks of 512 bits each, denoted by
M1 through Mt.

pad(M) = bin8(n) ||M || 1 || 0v ||bin64(|M |) = M1||M2|| · · · ||Mt . (1)



Input: Internal state 〈S, j〉, 64-byte message block X.
Output: The updated internal state 〈S, j〉.
1: for i = 0 to 255 do

2: j ← j + S[i] + X[r(i)]
3: swap(S[i], S[j])
4: end for

5: return 〈S, j〉

Fig. 1. The compression function of RC4-Hash, C
(
〈S, j〉 , X

)
. All arith-

metic is done modulo 256.

Compression Function. The compression function of RC4-Hash, which is
denoted by C

(
〈S, j〉 , X

)
, is described in Fig. 1. It updates the internal

state 〈S, j〉 in 256 steps. In every step, the pointer j is updated using
one byte of the message block X. Then, two elements of the array S are
swapped. Each of the 64 bytes of the message block is used in four steps.
The order in which they are used is given by the message reordering r(·),
see Table 5. This compression function is applied iteratively for every
message block M1 through Mt, starting from the initial state

〈
SIV, 0

〉
.

The initial value permutation SIV is given in Table 6.

Output Transformation. After every block of the padded message has
been processed, an output transformation gn

(
〈S, j〉

)
is applied. This

transformation generates the message digest of the required length n from
the internal state. First, the permutation S is composed with the initial
value permutation SIV. The resulting permutation is saved as T1. Then,
two blank iterations of the compression function C, i.e., using a zero
message block, are applied, resulting in T2. Finally, S is replaced by a
composition of the two saved permutations, T1 ◦T2 ◦T1, and the message
digest is generated using an algorithm similar to RC4’s pseudo-random
byte generation.

Figure 2 shows the definition of the entire output transformation. In
the original description of RC4-Hash [1], the output transformation was
further partitioned into the algorithms OWT (“one way transformation”)
and HBG (“hash byte generation”). These correspond to lines 2–9 and
10–15 of the algorithm in Fig. 2, respectively.

3 Fixed Points of the Compression Function C

In this section, we describe how to construct two distinct types of fixed
points for a certain number of iterations of the RC4-Hash compression



Input: Internal state 〈S, j〉 after processing the entire padded message.
Output: The message digest H.
1: S ← SIV ◦ S

2: // OWT (one way transformation)
3: T1 ← S

4: for i = 0 to 511 do

5: j ← j + S[i]
6: swap(S[i], S[j])
7: end for

8: T2 ← S

9: S ← T1 ◦ T2 ◦ T1

10: // HBG (hash byte generation)
11: for i = 0 to n do

12: j ← j + S[i]
13: swap(S[i], S[j])
14: H[i]← S[S[i] + S[j]]
15: end for

16: return H

Fig. 2. The output transformation of RC4-Hash, gn

(
〈S, j〉

)
. All arith-

metic is done modulo 256.

function C. Each of these constructions is based on one of two types of
“partial state rotations”, which are introduced in two lemmata, Lemma 1
and Lemma 3.

3.1 Fixed Points of Type I

Lemma 1 (Partial state rotations of type I). Consider an internal

state 〈S, 0〉 of RC4-Hash with S = {s0, s1, . . . , s255}. Denote by 〈S′, j′〉
the internal state reached after applying the compression function C using

the message block X = {x, x, . . . , x} with x = 1 − s0 mod 256:

〈
S′, j′

〉
= C

(
〈S, j〉 , X

)
. (2)

Now, it holds that

j′ = 0 and S′[i] =







s0 i = 0

si+1 1 ≤ i < 255

s1 i = 255

. (3)

Proof. Denote by
〈
S(i), j(i)

〉
the internal state of RC4-Hash after the i-th

step of the compression function C. First, we prove by induction that for



Table 1. Partial state rotations of type I.

step i j(i) S(i)

0 s0 s1 s2 s3 s4 · · · s253 s254 s255

0 1 s1 s0 s2 s3 s4 · · · s253 s254 s255

1 2 s1 s2 s0 s3 s4 · · · s253 s254 s255

2 3 s1 s2 s3 s0 s4 · · · s253 s254 s255

3 4 s1 s2 s3 s4 s0 · · · s253 s254 s255

...
...

...
...

...
...

...
...

...
...

254 255 s1 s2 s3 s4 s5 · · · s254 s255 s0

255 0 s0 s2 s3 s4 s5 · · · s254 s255 s1

every i < 256 it holds that
{

j(i) = i + 1 mod 256 , and

S(i)[i + 1 mod 256] = s0 .
(4)

It is clear that this holds before the first step, i.e., for i = −1, since
j(−1) = 0 and S(−1)[0] = S[0] = s0. Assume that the condition holds after
step i (i < 255). Then, the update of the pointer j in the (i + 1)-th step
is

j(i+1) = j(i) + S(i)[i + 1] + X[r(i + 1)] mod 256
= (i + 1) + s0 + (1 − s0) mod 256
= i + 2 mod 256 .

(5)

Thus, S(i+1) is found by swapping the (i + 1)-th and (i + 2)-th element
of S(i). Hence, S(i+1)[i + 2 mod 256] = S(i)[i + 1 mod 256] = s0, i.e., the
condition also holds after step i + 1.

After 255 steps, all the elements of S have been circularly shifted over
one position, i.e., S(254) = {s1, s2, . . . , s255, s0}. In the final step, the first
and the last element of S(254) are swapped since j(255) = 0, resulting in

S(255) = S′ = {s0, s2, s3, . . . , s254, s255, s1} . (6)

From this, the lemma follows. ⊓⊔

Table 1 gives a detailed illustration of Lemma 1. The first column
of this table gives the step number i, the second column gives the new
value of the pointer j, computed in this step. The last column contains
the array S after the step, where the elements that were just swapped are
encircled.

Based on this first type of partial state rotations, it is straightforward
to construct fixed points for 255 iterations of the compression function C
as is shown in the next theorem.



Theorem 1 (Fixed points of type I). Consider an internal state

〈S, 0〉 of RC4-Hash with S = {s0, s1, . . . , s255}. After 255 iterations of

the compression function C, each using the same message block X =
{x, x, . . . , x} with x = 1 − s0 mod 256, the same state is reached:

〈S, 0〉 = C255
(
〈S, 0〉 , X

)
. (7)

Proof. The repeated application of Lemma 1 proves the theorem. ⊓⊔

Note that the only requirement for the construction of a fixed point of
type I is that the pointer j has to be zero in the starting state. There are
no conditions on the contents of the array S. Also, when given a suitable
starting state, constructing a fixed point requires only a negligible amount
of work, i.e., one subtraction modulo 256 to compute the message byte
x = 1 − s0 mod 256.

3.2 Fixed Points of Type II

The message reordering r(·) has an interesting property which allows for
another type of partial state rotations.

Lemma 2. The message reordering r(·) does not reorder message bytes

with an even index to odd-numbered positions, or vice versa. In other

words,

∀i, 0 ≤ i < 256 : r(i) ≡ i (mod 2) . (8)

Proof. The lemma follows in a straightforward way from the definition of
r(·) in Table 5. ⊓⊔

Lemma 3 (Partial state rotations of type II). Consider an internal

state 〈S, 1〉 of RC4-Hash with S = {s0, s1, . . . , s255}. Denote by 〈S′, j′〉 the

internal state reached after applying the compression function C using the

message block X = {x0, x1, x0, x1, . . . , x0, x1} with x0 = 1 − s0 mod 256
and x1 = 1 − s1 mod 256:

〈
S′, j′

〉
= C

(
〈S, j〉 , X

)
. (9)

Now, it holds that

j′ = 1 and S′[i] =







si 0 ≤ i < 2

si+2 2 ≤ i < 254

si−252 254 ≤ i < 256

. (10)



Proof. Denote by
〈
S(i), j(i)

〉
the internal state of RC4-Hash after the i-th

step of the compression function C. Note that, because of Lemma 2 and
the definition of X, X[r(i)] = xi mod 2 = 1 − si mod 2. First, we prove by
induction that for every i < 256 it holds that







j(i) = i + 2 mod 256 , and

S(i)[i + 1 mod 256] = si+1 mod 2 , and

S(i)[i + 2 mod 256] = si mod 2 .

(11)

It is clear that this holds before the first step, i.e., for i = −1, since
j(−1) = 1, S(−1)[0] = S[0] = s0 and S(−1)[1] = S[1] = s1. Assume that the
condition holds after step i (i < 255). Then, the update of the pointer j

in the (i + 1)-th step is

j(i+1) = j(i) + S(i)[i + 1] + X[r(i + 1)] mod 256
= (i + 2) + si+1 mod 2 + (1 − si+1 mod 2) mod 256
= i + 3 mod 256 .

(12)

Thus, S(i+1) is found by swapping the (i+1)-th and (i+3)-th element of
S(i). Hence, S(i+1)[i + 3 mod 256] = S(i)[i + 1 mod 256] = si+1 mod 2. Of
course, S(i+1)[i+2 mod 256] = S(i)[i+2 mod 256] = si mod 2. This implies
that the condition also holds for step i + 1.

After 254 steps, all the elements of S have been circularly shifted over
two position, i.e., S(253) = {s2, s3, s4, . . . , s255, s0, s1}. Since j(254) = 0 and
j(255) = 1, the swaps made in the last two steps result in the following
state

S(255) = S′ = {s0, s1, s4, . . . , s255, s2, s3} . (13)

From this, the lemma follows. ⊓⊔

Table 2 gives a detailed illustration of Lemma 3. The notations are
the same as in Table 1. Based on this type of partial state rotations, fixed
points for 127 iterations of the compression function C can be constructed,
as is shown in the next theorem.

Theorem 2 (Fixed points of type II). Consider an internal state

〈S, 1〉 of RC4-Hash with S = {s0, s1, . . . , s255}. After 127 iterations of

the compression function C, each using the same message block X =
{x0, x1, x0, x1, . . . , x0, x1} with x0 = 1− s0 mod 256 and x1 = 1− s1 mod
256, the same state is reached:

〈S, 1〉 = C127
(
〈S, 1〉 , X

)
. (14)



Table 2. Partial state rotations of type II.

step i j(i) S(i)

1 s0 s1 s2 s3 s4 · · · s253 s254 s255

0 2 s2 s1 s0 s3 s4 · · · s253 s254 s255

1 3 s2 s3 s0 s1 s4 · · · s253 s254 s255

2 4 s2 s3 s4 s1 s0 · · · s253 s254 s255

...
...

...
...

...
...

...
...

...
...

253 255 s2 s3 s4 s5 s6 · · · s255 s0 s1

254 0 s0 s3 s4 s5 s6 · · · s255 s2 s1

255 1 s0 s1 s4 s5 s6 · · · s255 s2 s3

Proof. The repeated application of Lemma 3 proves the theorem. ⊓⊔

Note that, as for fixed points of type I, the only requirement for the
construction of a fixed point of type II is that the j pointer has a certain
value in the starting state. There are no conditions on the contents of
the array S. Constructing a fixed point of type II, when given a suitable
starting state, also requires only a negligible amount of work, i.e., two
subtractions modulo 256 to compute the message bytes x0 = 1 − s0 mod
256 and x1 = 1 − s1 mod 256.

One could try to further generalise this to longer cyclic patterns. How-
ever, the message byte reordering r(·) prevents this as there is no p > 2
for which it holds that

∀i, 0 ≤ i < 256 : r(i) ≡ i (mod p) . (15)

3.3 Relation to Finney States

A Finney state [4] is an RC4-state where j = i + 1 and S[i] = 1. From
the definition of the RC4 stream cipher, see Fig. 5, it follows that if the
current state is a Finney state, the next state must also be a Finney state.
Similarly, a Finney state can only arise from a Finney state. In a Finney
state, the element “1” is simply moved to the next position in the array S

and j is incremented. The initialisation of the RC4 pseudo-random byte
generator, see Fig. 5, ensures that the initial state is not a Finney state.
Hence, Finney states can never occur in RC4.

In RC4-Hash, however, we can achieve a similar pattern. This is ex-
actly what is done in the case of partial state rotations of type I. The
extra freedom coming from the message input is exploited to ensure that
the element S[i] is always moved to the next position, such that it is again



˙
SIV, 0

¸

bin8(n)||P

C 〈S0, 0〉

C

M0,1

〈S1, 0〉 C C · · · C

FP type I; 255×M1,1

z }| {

C C · · · C

| {z }

FP type I; 255×M0,0

〈S0, 0〉

M0,1

C

〈S1, 0〉

padding

C g H

Fig. 3. A collision pair for RC4-Hash using fixed points of type I.

used to update j in the next iteration. Partial state rotations of type II
are a generalisation of this, using two elements in an alternating way.

4 Collisions for RC4-Hash

This section describes how to use fixed points for a number of iterations
of the compression function C to construct colliding message pairs for
RC4-Hash. In order to be able to construct fixed points, the value of the
pointer j in the internal state of RC4-Hash has to be equal to zero (for
fixed points of type I) or one (for fixed points of type II), as described
in Sect. 3. Although the initial value of j is zero, we cannot make use of
the first block because we do not have control over its first byte, which
contains the digest length.

Consider fixed points of type I, i.e., we want j = 0. Since j can only
take 28 possible values, we can simply search for a prefix block P which
leads to a suitable internal state:

〈S0, 0〉 = C
( 〈

SIV, 0
〉
, bin8(n)||P

)
. (16)

We expect to find a suitable prefix block after about 28 random trials. At
this point, we can easily construct a fixed point for this state 〈S0, 0〉 by
applying Theorem 1. Denote by M0,0 the message block that is used 255
times in this fixed point.

Then, we search for an additional message block M0,1 which trans-
forms the state 〈S0, 0〉 into 〈S1, 0〉:

〈S1, 0〉 = C
(
〈S0, 0〉 , M0,1

)
. (17)

Again, the only condition on M0,1 is that the value of the j pointer is not
changed by the compression function C. The expected number of random



˙
SIV, 0

¸

bin8(n)||P

C 〈S0, 1〉

C

M0,1

〈S1, 1〉 C C · · · C

FP type II; 127×M1,1

z }| {

C C · · · C

| {z }

FP type II; 127×M0,0

〈S0, 1〉

M0,1

C

〈S1, 1〉

padding

C g H

Fig. 4. A collision pair for RC4-Hash using fixed points of type II.

trials required to find a suitable message block is again about 28. For the
state 〈S1, 0〉, it is also possible to construct a fixed point of type I, using
Theorem 1. Denote the message block used in this fixed point by M1,1.
Now, consider the following two messages:

M = P ||M0,1||

255
︷ ︸︸ ︷

M1,1|| · · · ||M1,1 ,

M⋆ = P ||M0,0|| · · · ||M0,0

︸ ︷︷ ︸

255

||M0,1 .
(18)

As shown in Fig. 3, these messages form a collision. Indeed, after process-
ing the 257-th block, the internal state of RC4-Hash is 〈S1, 0〉 for both
messages, i.e., an internal state collision is reached. The extra padding
block containing the message length and the output transformation main-
tain the collision. The expected total time complexity is only 29 evalu-
ations of the compression function C. Note that verifying the collision
requires about the same effort, since hashing M and M⋆ requires two
times 258 calls to the compression function C.

Using fixed points of type II, collisions can be found in a completely
similar way, as Fig. 4 illustrates. The only differences are that we now
require j = 1, and that the fixed points only contain 127 iterations of the
compression function C. The expected time complexity is also 29. If we do
not fix in advance which type of fixed points to use, but let this depend
on which kind of prefix block is found first, the expected time complexity
can be lowered slightly to 27 + 28 compression function evaluations.

There is no need to restrict the prefix block P or the message block
M0,1 to be only a single block. Using multiple blocks does not (signifi-
cantly) increase the expected time complexity for finding a collision pair,



Table 3. Example collision pair for RC4-Hash64, using fixed points of
type I.

M M⋆

block 1 s. IndestEEGE AnD B. pReNeEl - 

(63 bytes) cosIc - cOlLisIoNS FoR rC4-Hash.

block 2 thiS MEssAgE Is pArT oF a colLis AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(64 bytes) ion EXaMpLe for RC4-HASH. COSIC. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

blocks 3–256 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(254 × 64 bytes) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

...
...

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

block 257 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa thiS MEssAgE Is pArT oF a colLis

(64 bytes) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ion EXaMpLe for RC4-HASH. COSIC.

RC4-Hash64(M) = 0093b4baefdc64f93d7081978808c49d1286523696e6d4a35ab64f1e42695aff

RC4-Hash64(M
⋆) 79ce81eae91cb47673c4989238fab010f47466906fa65bed88753802c71ae82bx

if only the last block of P , resp. M0,1, is varied in order to obtain the
desired value for the pointer j. Of course, a colliding message pair can
always be extended with an equal suffix.

Tables 3 and 4 give examples of colliding message pairs for RC4-Hash64,
constructed using fixed points of type I and type II, respectively. Addi-
tional constraints were imposed to arrive at meaningful messages.

5 Discussion

Kelsey-Schneier Second Preimages. Since fixed points of the compression
function of RC4-Hash can be constructed very easily, one may consider
to use them to mount a Kelsey-Schneier second preimage attack [6]. This
involves building expandable messages, i.e., messages of varying length,
which all collide on the intermediate hash result immediately after pro-
cessing the message. The main problem which makes the Kelsey-Schneier
second preimage attack fail for RC4-Hash, is the very large internal state
of RC4-Hash. Because of this, the Kelsey-Schneier attack is much slower
than exhaustive search in this case.

Multicollisions. A multicollision is a (large) set of messages that all hash
to the same value. Multicollisions and their applications were described by
Joux [5], although Coppersmith already used them in 1985 [2]. In order to
obtain multicollisions for RC4-Hash, we simply concatenate the method



Table 4. Example collision pair for RC4-Hash64, using fixed points of
type II.

M M⋆

block 1 s. IndesTeEGE ANd b. pREneEl - 

(63 bytes) cosIc - colLISioNS For Rc4-hAsH.

block 2 thiS MesSagE IS pArT of a collis aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

(64 bytes) ioN EXAmPle FOr rc4-HASH. COSIC. aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

blocks 3–128 abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

(126 × 64 bytes) abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

...
...

abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

block 129 abababababababababababababababab thiS MesSagE IS pArT of a collis

(64 bytes) abababababababababababababababab ioN EXAmPle FOr rc4-HASH. COSIC.

RC4-Hash64(M) = 0023dd337650ef0d9b5e77be533ea644198ff0d8f1d8190628d95b9dd04dadf5

RC4-Hash64(M
⋆) d9cd2c1ad8adc8555f03ea3819df4128bc96462a53c7e0cc1afffe78db3bd652x

from Sect. 4 several times. Concatenating it k times yields 2k colliding
messages. Actually, only part of the method needs to be repeated k times.
Indeed, as the value of the pointer j is maintained by the fixed points,
only the search for message blocks M0,1 has to be repeated. Thus, the
expected time for finding 2k colliding messages for RC4-Hash is 27 +k ·28

compression function evaluations. Naturally, also the method of Kelsey
and Schneier [6] to construct multicollisions can be applied, and both
methods can even be combined.

Mitigating the Attack. The collision attack described in this paper is built
on the existence of two types of fixed points of the compression function of
RC4-Hash, which were described in Sect 3. These fixed points use patterns
where all the (reordered) message bytes are equal (type I) or alternate
between two values (type II). Replacing the message reordering r(·) with
a message expansion that guarantees that such patterns can never occur
foils the attack. Another approach would be to introduce asymmetry, for
instance using intermediate rounds.

6 Conclusion

We have shown that RC4-Hash is not collision resistant. There exist two
distinct types of fixed points for a number of iterations of the RC4-Hash
compression function C. These can be used to construct colliding message



pairs with an expected effort of less than 29 compression function eval-
uations. This also leads to multicollisions, yielding 2k colliding messages
with an expected effort of 27 + k · 28 compression function evaluations.

References

1. D. Chang, K. C. Gupta and M. Nandi, “RC4-Hash: A New Hash Function Based on
RC4” In Progress in Cryptology – INDOCRYPT 2006, LNCS, vol. 4329, pp. 80–94,
Springer-Verlag, 2006.

2. D. Coppersmith, “Another Birthday Attack”, In Advances in Cryptology –
CRYPTO 1985, LNCS, vol. 218, pp. 14–17, Springer-Verlag, 1986.

3. C. De Cannière and C. Rechberger, “Finding SHA-1 Characteristics: General Re-
sults and Applications”, In Advances in Cryptology – ASIACRYPT 2006, LNCS,
vol. 4284, pp. 1–20, Springer-Verlag, 2006.

4. H. Finney, “An RC4 cycle that can’t happen”, Newsgroup post in sci.crypt,
September 1994.

5. A. Joux, “Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions”, In Advances in Cryptology – CRYPTO 2004, LNCS, vol. 3152,
pp. 306–316, Springer-Verlag, 2004.

6. J. Kelsey and B. Schneier, “Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work”, In Advances in Cryptology – EUROCRYPT 2005, LNCS,
vol. 3494, pp. 474–490, Springer-Verlag, 2005.

7. S. Lucks, “A Failure-Friendly Design Principle for Hash Functions”, In Advances
in Cryptology – ASIACRYPT 2005, LNCS, vol. 3788, pp. 474–494, Springer-Verlag,
2005.

8. B. Schneier, “Applied Cryptography”, Second Edition, John Wiley & Sons, 1996.
9. X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions”, In Advances

in Cryptology – EUROCRYPT 2005, LNCS, vol. 3494, pp. 19–35, Springer-Verlag,
2005.

10. X. Wang, H. Yu and Y. L. Yin, “Efficient Collision Search Attacks on SHA-0”, In
Advances in Cryptology – CRYPTO 2005, LNCS, vol. 3621, pp. 1–16, Springer-
Verlag, 2005.

11. X. Wang, Y. L. Yin and H. Yu, “Finding Collisions in the Full SHA-1”, In Ad-
vances in Cryptology – CRYPTO 2005, LNCS, vol. 3621, pp. 17–36, Springer-
Verlag, 2005.



Appendix

Table 5. The message reordering r(·).

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57, 48, 39, 30, 21, 12, 3,

58, 49, 40, 31, 22, 13, 4, 59, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61,
52, 43, 34, 25, 16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9,
0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23, 16, 9, 2, 59, 52, 45,

38, 31, 24, 17, 10, 3, 60, 53, 46, 39, 32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19,
12, 5, 62, 55, 48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7,
0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1, 48, 31, 14, 61, 44, 27,

10, 57, 40, 23, 6, 53, 36, 19, 2, 49, 32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37,
20, 3, 50, 33, 16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

Table 6. The initial value permutation SIV.

145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248,
236, 218, 192, 217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12,
233, 189, 159, 169, 240, 156, 184, 200, 209, 173, 20, 252, 96, 211, 143, 101,
44, 223, 118, 1, 232, 35, 239, 9, 114, 109, 161, 183, 88, 66, 219, 78,

157, 174, 187, 193, 199, 99, 52, 120, 89, 166, 18, 76, 241, 13, 225, 6,
146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19, 91, 108, 186,
116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179, 175,
251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230,
58, 153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152,

165, 235, 227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94,
42, 243, 228, 87, 82, 27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92,

198, 172, 170, 55, 115, 30, 107, 17, 56, 31, 135, 229, 40, 111, 37, 222,
182, 25, 43, 119, 244, 191, 122, 102, 21, 93, 97, 131, 164, 10, 130, 47,
176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48, 142, 73, 123, 204,
206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254, 90,
194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110,



Input: Key K consisting of κ bytes.
Output: Initial internal state of RC4, 〈S, i, j〉.
1: // RC4 Key Scheduling Algorithm (KSA)
2: S ← {0, 1, · · · , 255}
3: j ← 0
4: for i = 0 to 255 do

5: j ← j + S[i] + K[i mod κ]
6: swap(S[i], S[j])
7: end for

8: return 〈S, 0, 0〉

Input: RC4 internal state 〈S, i, j〉.
Output: One byte of keystream, updated internal state.
1: // RC4 pseudo-random byte generation (PRBG)
2: i← i + 1
3: j ← j + S[i]
4: swap(S[i], S[j])
5: return S[S[i] + S[j]]

Fig. 5. The RC4 stream cipher, consisting of a key scheduling algorithm
(top) and a pseudo-random byte generator (bottom). All arithmetic is
done modulo 256. [8]


