Abstract
Let \({{\mathbb F}_q}\) denote the q-element field. A q-ary de Bruijn sequence of degree m is a cyclic sequence of elements of \({{\mathbb F}_q}\), such that every element in \({{\mathbb F}_q}^m\) appears exactly once as a consecutive m-tuple in the cyclic sequence. We consider its projective analogue; namely, a cyclic sequence such that every point in the projective space \(({{\mathbb F}_q}^{m+1} -\{0\})/({{\mathbb F}_q}^\times)\) appears exactly once as a consecutive (m + 1)-tuple. We have an explicit formula \((q!)^{\frac{q^m-1}{q-1}}q^{-m}\) for the number of distinct such sequences.
This work is supported in part by JSPS Grant-In-Aid #16204002, #18654021, #18740044, #19204002 and JSPS Core-to-Core Program No.18005.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)
Golomb, S.W.: Shift register sequences. Holden-Day, Inc., San Francisco (1967)
Hagita, M., Matsumoto, M., Natsu, F., Ohtsuka, Y.: Error Correcting Sequence and Projective De Bruijn Graph. Graphs and Combinatorics 24(3), 185–192 (2008)
Huaxiao, Z., Fuji, Z., Qiongxiang, H.: On the number of spanning trees and Eulerian tours in iterated line digraphs. Discrete Appl. Math. 73(1), 59–67 (1997)
Li, X.L., Fuji, Z.: On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graphs. Discrete Math. 94(3), 189–197 (1991)
MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland, Amsterdam (1977)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ohtsuka, Y., Matsumoto, M., Hagita, M. (2008). Projective de Bruijn Sequences. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-85912-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85911-6
Online ISBN: 978-3-540-85912-3
eBook Packages: Computer ScienceComputer Science (R0)