Skip to main content

Projective de Bruijn Sequences

  • Conference paper
Sequences and Their Applications - SETA 2008 (SETA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5203))

Included in the following conference series:

  • 983 Accesses

Abstract

Let \({{\mathbb F}_q}\) denote the q-element field. A q-ary de Bruijn sequence of degree m is a cyclic sequence of elements of \({{\mathbb F}_q}\), such that every element in \({{\mathbb F}_q}^m\) appears exactly once as a consecutive m-tuple in the cyclic sequence. We consider its projective analogue; namely, a cyclic sequence such that every point in the projective space \(({{\mathbb F}_q}^{m+1} -\{0\})/({{\mathbb F}_q}^\times)\) appears exactly once as a consecutive (m + 1)-tuple. We have an explicit formula \((q!)^{\frac{q^m-1}{q-1}}q^{-m}\) for the number of distinct such sequences.

This work is supported in part by JSPS Grant-In-Aid #16204002, #18654021, #18740044, #19204002 and JSPS Core-to-Core Program No.18005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    Google Scholar 

  2. Golomb, S.W.: Shift register sequences. Holden-Day, Inc., San Francisco (1967)

    MATH  Google Scholar 

  3. Hagita, M., Matsumoto, M., Natsu, F., Ohtsuka, Y.: Error Correcting Sequence and Projective De Bruijn Graph. Graphs and Combinatorics 24(3), 185–192 (2008)

    Article  MathSciNet  Google Scholar 

  4. Huaxiao, Z., Fuji, Z., Qiongxiang, H.: On the number of spanning trees and Eulerian tours in iterated line digraphs. Discrete Appl. Math. 73(1), 59–67 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, X.L., Fuji, Z.: On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graphs. Discrete Math. 94(3), 189–197 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Matthew G. Parker Alexander Pott Arne Winterhof

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohtsuka, Y., Matsumoto, M., Hagita, M. (2008). Projective de Bruijn Sequences. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85912-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85911-6

  • Online ISBN: 978-3-540-85912-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics