Skip to main content

A Lattice-Based Minimal Partial Realization Algorithm

  • Conference paper
Sequences and Their Applications - SETA 2008 (SETA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5203))

Included in the following conference series:

Abstract

In this paper we extend a minimal partial realization algorithm for vector sequences to matrix sequences by means of a lattice basis reduction algorithm in function fields. The different ways of transforming a given basis into a reduced one lead to different partial realization algorithms and so our technique provides a unified approach to the minimal partial realization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoulas, A.C.: On recursiveness and related topics in linear systems. IEEE Trans. Automat. Control 31(12), 1121–1135 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antoulas, A.C.: Recursive modeling of discrete-time time series. In: Van Dooren, P., Wyman, B. (eds.) Linear Algebra for Control Theory, IMA, vol. 62, pp. 1–20 (1994)

    Google Scholar 

  3. Bultheel, A., De Moor, B.: Rational approximation in linear systems and control. J. Comput. Appl. Math. 121, 355–378 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dawson, E., Simpson, L.: Analysis and design issues for synchronous stream ciphers. In: Niederreiter, H. (ed.) Coding Theory and Cryptology, pp. 49–90. World Scientific, Singapore (2002)

    Google Scholar 

  5. Dickinson, B.W., Morf, M., Kailath, D.: A minimal realization algorithm for matrix sequences. IEEE Trans. Automat. Control 19(1), 31–38 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding, C.S.: Proof of Massey’s conjectured algorithm, Advances in Cryptology. LNCS, vol. 330, pp. 345–349. Springer, Berlin (1988)

    Google Scholar 

  7. ECRYPT stream cipher project, http://www.ecrypt.eu.org/stream

  8. Feng, G.L., Tzeng, K.K.: A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inform. Theory 37, 1274–1287 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Forney, G.D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13, 493–520 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gragg, W.B., Lindquist, A.: On the partial realization problem. Linear Alg. Appl. 50, 277–319 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 303–316. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Kalman, R.E.: On minimal partial realizations of a linear input/output map. In: Kalman, R.E., DeClaris, N. (eds.) Aspects of network and System Theory, New York, pp. 385–407 (1971)

    Google Scholar 

  13. Kuijper, M.: An algorithm for constructing a minimal partail realization in the multivariable case. Syst. Contr. Lett. 31, 225–233 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lenstra, A.K.: Factoring multivariate polynomials over finite fields. J. Comp. Sys. Sci. 30, 235–248 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mahler, K.: An analogue to Minkowski’s geometry of numbers in a field of series. Ann. of Math. 42, 488–522 (1941)

    Article  MathSciNet  Google Scholar 

  16. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15(1), 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schmidt, W.M.: Construction and estimation of bases in function fields. J. Number Theory 39, 181–224 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Van Barel, M., Bultheel, A.: A generalized minimal partial realization problem. Linear Alg. Appl. 254, 527–551 (1997)

    Article  MATH  Google Scholar 

  19. Wang, L.-P., Zhu, Y.-F.: F[x]-lattice basis reduction algorithm and multisequence synthesis. Science in China (Series F) 44, 321–328 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Wang, L.-P., Zhu, Y.-F., Pei, D.-Y.: On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Inform. Theory 50, 2905–2910 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Matthew G. Parker Alexander Pott Arne Winterhof

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, LP. (2008). A Lattice-Based Minimal Partial Realization Algorithm. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85912-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85911-6

  • Online ISBN: 978-3-540-85912-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics