Skip to main content

A New Tool for Assurance of Perfect Nonlinearity

  • Conference paper
Sequences and Their Applications - SETA 2008 (SETA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5203))

Included in the following conference series:

  • 977 Accesses

Abstract

Let f(x) be a mapping f: GF(p n) →GF(p n), where p is prime and GF(p n) is the finite field with p n elements. A mapping f is called differentially k-uniform if k is the maximum number of solutions x ∈ GF(p n) of f(x + a) − f(x) = b, where a, b ∈ GF(p n) and a ≠ 0. A 1-uniform mapping is called perfect nonlinear (PN). In this paper, we propose an approach for assurance of perfect nonlinearity which involves simply checking a trace condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carlet, C., Ding, C.: Highly nonlinear mappings. J. of Complexity 20, 205–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Des., Codes, Cryptogr. 10, 167–184 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Coulter, R.S., Henderson, M.: Commutative presemifields and semifields. Advances in Math. 217, 282–304 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dembowski, P., Ostrom, T.: Planes of order n with collineation groups of order n 2. Math. Z. 103, 239–258 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ding, C., Yuan, J.: A family of skew Paley-Hadamard difference sets. J. Comb. Theory Ser. A 113, 1526–1535 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Helleseth, T., Sandberg, D.: Some power mappings with low differential uniformity. Applicable Algebra in Engineering, Communications and Computing 8, 363–370 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Helleseth, T., Rong, C., Sandberg, D.: New families of almost perfect nonlinear power mappings. IEEE Trans. Inform. Theory 52, 475–485 (1999)

    Article  MathSciNet  Google Scholar 

  8. Helleseth, T., Kyureghyan, G., Ness, G.J., Pott, A.: On a family of perfect nonlinear binomials (submitted)

    Google Scholar 

  9. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Matthew G. Parker Alexander Pott Arne Winterhof

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

At, N., Cohen, S.D. (2008). A New Tool for Assurance of Perfect Nonlinearity. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85912-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85911-6

  • Online ISBN: 978-3-540-85912-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics