Skip to main content

Discriminative Structure Learning of Markov Logic Networks

  • Conference paper
Inductive Logic Programming (ILP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5194))

Included in the following conference series:

Abstract

Markov Logic Networks (MLNs) combine Markov networks and first-order logic by attaching weights to first-order formulas and viewing these as templates for features of Markov networks. Learning the structure of MLNs is performed by state-of-the-art methods by maximizing the likelihood of a relational database. This can lead to suboptimal results given prediction tasks. On the other hand better results in prediction problems have been achieved by discriminative learning of MLNs weights given a certain structure. In this paper we propose an algorithm for learning the structure of MLNs discriminatively by maximimizing the conditional likelihood of the query predicates instead of the joint likelihood of all predicates. The algorithm chooses the structures by maximizing conditional likelihood and sets the parameters by maximum likelihood. Experiments in two real-world domains show that the proposed algorithm improves over the state-of-the-art discriminative weight learning algorithm for MLNs in terms of conditional likelihood. We also compare the proposed algorithm with the state-of-the-art generative structure learning algorithm for MLNs and confirm the results in [22] showing that for small datasets the generative algorithm is competitive, while for larger datasets the discriminative algorithm outperfoms the generative one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Besag, J.: Statistical analysis of non-lattice data. Statistician 24, 179–195 (1975)

    Article  Google Scholar 

  2. Davis, J., Burnside, E., de Castro Dutra, I., Page, D., Santos Costa, V.: An integrated approach to learning Bayesian networks of rules. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 84–95. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proc. of 23rd Intl. Conf. on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  4. Dehaspe, L.: Maximum entropy modeling with clausal constraints. In: Proc. of ILP 1997, pp. 109–124 (1997)

    Google Scholar 

  5. Della Pietra, S., Pietra, V.D., Laferty, J.: Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380–392 (1997)

    Article  Google Scholar 

  6. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146 (1997)

    Article  MATH  Google Scholar 

  7. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.: Probabilistic Inductive Logic Programming - Theory and Applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  8. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  9. Friedman, J.H.: On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1, 55–77 (1997)

    Article  Google Scholar 

  10. Getoor, L., Taskar, B.: Introduction to statistical relational learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  11. Greiner, R., Su, X., Shen, S., Zhou, W.: Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59, 297–322 (2005)

    Article  MATH  Google Scholar 

  12. Grossman, D., Domingos, P.: Learning bayesian network classiers by maximizing conditional likelihood. In: Proc. 21st Int’l Conf. on Machine Learning, pp. 361–368. ACM Press, Banf (2004)

    Google Scholar 

  13. Hoos, H.H., Stutzle, T.: Stochastic local search: Foundations and applications. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  14. Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Proc, 22nd Int’l Conf. on Machine Learning, pp. 441–448 (2005)

    Google Scholar 

  15. Kok, S., Singla, P., Richardson, M., Domingos, P.: The alchemy system for statistical relational ai (Technical Report). Department of Computer Science and Engineering, University of Washington, Seattle, WA (2005), http://alchemy.cs.washington.edu/

  16. Laferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th Int’l Conf. on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  17. Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Naive Bayes and FOIL. In: Proc. 20th Nat’l Conf. on Artificial Intelligence, pp. 795–800. AAAI Press, Menlo Park (2005)

    Google Scholar 

  18. Landwehr, N., Kersting, K., De Raedt, L.: Integrating Naive Bayes and FOIL. Journal of Machine Learning Research, 481–507 (2007)

    Google Scholar 

  19. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning Simple Relational Kernels. In: Proc. 21st Nat’l Conf. on Artificial Intelligence. AAAI Press, Menlo Park (2006)

    Google Scholar 

  20. Loureno, H.R., Martin, O., Stutzle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  21. Lowd, D., Domingos, P.: Efficient weight learning for markov logic networks. In: Proc. of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 200–211 (2007)

    Google Scholar 

  22. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative: A comparison of logistic regression and naive Bayes. In: Advances in Neural Information Processing Systems, vol. 14, pp. 841–848. MIT Press, Cambridge (2002)

    Google Scholar 

  23. McCallum, A.: Efficiently inducing features of conditional random fields. In: Proc. 19th Conf. on Uncertainty in Artificial Intelligence, pp. 403–410 (2003)

    Google Scholar 

  24. Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network structure. In: Proc. 24th Int’l Conf. on Machine Learning, pp. 625–632 (2007)

    Google Scholar 

  25. Pernkopf, F., Bilmes, J.: Discriminative versus generative parameter and structure learning of Bayesian network classifiers. In: Proc, 22nd Int’l Conf. on Machine Learning, pp. 657–664 (2005)

    Google Scholar 

  26. Popescul, A., Ungar, L., Lawrence, S., Pennock, D.: Statistical Relational Learning for Document Mining. In: Proc. 3rd Int’l Conf. on Data Mining, pp. 275–282 (2003)

    Google Scholar 

  27. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proc. 21st Nat’l Conf. on Artificial Intelligence, pp. 458–463. AAAI Press, Menlo Park (2006)

    Google Scholar 

  28. Poon, H., Domingos, P., Sumner, M.: A General Method for Reducing the Complexity of Relational Inference and its Application to MCMC. In: Proc. 23rd Nat’l Conf. on Artificial Intelligence. AAAI Press, Chicago (to appear, 2008)

    Google Scholar 

  29. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  30. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–236 (2006)

    Article  Google Scholar 

  31. Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Proc. 20th Nat’l Conf. on Artificial Intelligence, pp. 868–873. AAAI Press, Menlo Park (2005)

    Google Scholar 

  32. Singla, P., Domingos, P.: Entity resolution with markov logic. In: Proc. 6th Int’l Conf. on Data Mining, pp. 572–582. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  33. Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In: Proc. 21st Nat’l Conf. on Artificial Intelligence, pp. 488–493. AAAI Press, Menlo Park (2006)

    Google Scholar 

  34. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proc. HLT-NAACL, pp. 134–141 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Filip Železný Nada Lavrač

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biba, M., Ferilli, S., Esposito, F. (2008). Discriminative Structure Learning of Markov Logic Networks. In: Železný, F., Lavrač, N. (eds) Inductive Logic Programming. ILP 2008. Lecture Notes in Computer Science(), vol 5194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85928-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85928-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85927-7

  • Online ISBN: 978-3-540-85928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics