Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 15))

Included in the following conference series:

  • 1608 Accesses

Abstract

Sleep disorders are a very common unawareness illness among public. Obstructive Sleep Apnea Syndrome (OSAS) is characterized with decreased oxygen saturation level and repetitive upper respiratory tract obstruction episodes during full night sleep. In the present study, we have proposed a novel data normalization method called Line Based Normalization Method (LBNM) to evaluate OSAS using real data set obtained from Polysomnography device as a diagnostic tool in patients and clinically suspected of suffering OSAS. Here, we have combined the LBNM and classification methods comprising C4.5 decision tree classifier and Artificial Neural Network (ANN) to diagnose the OSAS. Firstly, each clinical feature in OSAS dataset is scaled by LBNM method in the range of [0,1]. Secondly, normalized OSAS dataset is classified using different classifier algorithms including C4.5 decision tree classifier and ANN, respectively. The proposed normalization method was compared with min-max normalization, z-score normalization, and decimal scaling methods existing in literature on the diagnosis of OSAS. LBNM has produced very promising results on the assessing of OSAS. Also, this method could be applied to other biomedical datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AASM. Sleep-Related Breathing Disorders in Adults: Recommendations for Syndrome Definition and Measurement Techniques in Clinical Research. The Report of an American Academy of Sleep Medicine Task Force, SLEEP, Vol. 22(5) (1999)

    Google Scholar 

  2. Eliot, S., Janita, K., Cheryl Black, L., Carole, L.: Marcus. Pulse Transit Time as a measure of arousal and respiratory effort in children with sleep-disorder breathing. Pediatric research 53(4), 580–588 (2003)

    Article  Google Scholar 

  3. Al-Ani, T., Hamam, Y., Novak, D., Pozzo Mendoza, P., Lhotska, L., Lofaso, F., Isabey, D., Fodil, R.: Noninvasive Automatic Sleep Apnea Classification System, Bio. Med. Sim. 2005, Linköping, Sweden, May 26–27 (2005)

    Google Scholar 

  4. Haitham, M., Al-Angari, A., Sahakian, V.: Use of Sample Entropy Approach to Study Heart Rate Variability in Obstructive Sleep Apnea Syndrome. IEEE Transactions in Biomedical Engineering 54(10), 1900–1904 (2007)

    Article  Google Scholar 

  5. Campo, F.d., Hornero, R., Zamarro´n, C., Abasolo, D.E., A´lvarez, D.: Oxygen saturation regularity analysis in the diagnosis of obstructive sleep apnea. Artificial Intelligence in Medicine 37, 111–118 (2006)

    Article  Google Scholar 

  6. Kwiatkowska, M., Schmittendorf, E.: Assessment of Obstructive Sleep Apnea using Pulse Oximetry and Clinical Prediction Rules: a Fuzzy Logic Approach, BMT (2005)

    Google Scholar 

  7. Polat, K., Yosunkaya, Ş., Güneş, S.: Pairwise ANFIS Approach to Determining the Disorder Degree of Obstructive Sleep Apnea Syndrome. Journal of Medical Systems 32(3), 243–250 (2008)

    Article  Google Scholar 

  8. Mitchell, M.T.: Machine Learning. McGraw-Hill, Singapore (1997)

    MATH  Google Scholar 

  9. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  10. Akdemir, B., Polat, K., Günes, S.: Prediction of E.Coli Promoter Gene Sequences Using a Hybrid Combination Based on Feature Selection, Fuzzy Weighted Pre-processing, and Decision Tree Classifier. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 125–131. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Haykin, S.: Neural networks: A comprehensive foundation. Macmillan College Publishing Company, NewYork (1994)

    MATH  Google Scholar 

  12. Kara, S., Guven, A.: Neural Network-Based Diagnosing for Optic Nerve Disease from Visual-Evoked Potential.  31, 391–396 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akdemir, B., Güneş, S., Yosunkaya, Ş. (2008). New Data Pre-processing on Assessing of Obstructive Sleep Apnea Syndrome: Line Based Normalization Method (LBNM). In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2008. Communications in Computer and Information Science, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85930-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85930-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85929-1

  • Online ISBN: 978-3-540-85930-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics