Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 15))

Included in the following conference series:

Abstract

This paper presents a method to segment the region of objects in outdoor scene for autonomous robot navigation. The proposition of the method segments from an image taken by moving robot on outdoor Scene. The method begins with object segmentation, which uses multiple features to obtain the object of segmented region. Multiple features are color, edge, line segments, Hue Co-occurrence Matrix (HCM), Principal Components (PCs) and Vanishing Points (VPs). Model the objects of outdoor scene that define their characteristics individually. We segment the region as mixture using the proposed features and methods. Objects can be detected when we combine predefined multiple features. Next, the stage classifies the object into natural and artificial ones. We detect sky and trees of natural object and building of artificial object. Finally, the last stage shows the combination of appearance and context information. We confirm the result of object segmentation through experiments by using multiple features and context information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture Features for Image Classification. IEEE Trans. on Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  2. Li, J., Wang, J.Z., Wiederhold, G.: Classification of Textured and Non-textured Images Using Region Segmentation. Int’l, Conf. on Image Processing, pp. 754–757 (2000)

    Google Scholar 

  3. Zhang, C., Wang, P.: A New Method of Color Image Segmentation Based on Intensity and Hue Clustering. Int’l Conf. on Pattern Recognition 3, 613–616 (2000)

    Google Scholar 

  4. Partio, M., Cramariuc, B., Gabbouj, M., Visa, A.: Rock Texture Retrieval Using Gray Level Co-occurrence Matrix. In: Proc. of 5th Nordic Signal Processing Symposium (2002)

    Google Scholar 

  5. Singhal, A., Jiebo, L., Weiyu, Z.: Probabilistic spatial context models for scene content understanding. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 235–241 (2003)

    Google Scholar 

  6. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Xuming He., Zemel R. S., Carreira-Perpinan, M. A.: Multiscale conditional random fields for image labeling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 695–702(2004)

    Google Scholar 

  8. Zhang, W., Kosecka, J.: Localization based on building recognition. In: Int’l Conf. on Computer Vision and Pattern Recognition, vol. 3, pp. 21–28 (2005)

    Google Scholar 

  9. Kim, D.N., Trinh, H.H., Jo, K.H.: Object Recognition by Segmented Regions Using Multiple Cues on Outdoor Environment. International Journal of Information Acquisition 4(3), 205–213 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, DN., Trinh, HH., Jo, KH. (2008). Region Segmentation of Outdoor Scene Using Multiple Features and Context Information. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2008. Communications in Computer and Information Science, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85930-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85930-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85929-1

  • Online ISBN: 978-3-540-85930-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics