Abstract
This paper presents a method to segment the region of objects in outdoor scene for autonomous robot navigation. The proposition of the method segments from an image taken by moving robot on outdoor Scene. The method begins with object segmentation, which uses multiple features to obtain the object of segmented region. Multiple features are color, edge, line segments, Hue Co-occurrence Matrix (HCM), Principal Components (PCs) and Vanishing Points (VPs). Model the objects of outdoor scene that define their characteristics individually. We segment the region as mixture using the proposed features and methods. Objects can be detected when we combine predefined multiple features. Next, the stage classifies the object into natural and artificial ones. We detect sky and trees of natural object and building of artificial object. Finally, the last stage shows the combination of appearance and context information. We confirm the result of object segmentation through experiments by using multiple features and context information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture Features for Image Classification. IEEE Trans. on Syst. Man Cybern. SMC 3(6), 610–621 (1973)
Li, J., Wang, J.Z., Wiederhold, G.: Classification of Textured and Non-textured Images Using Region Segmentation. Int’l, Conf. on Image Processing, pp. 754–757 (2000)
Zhang, C., Wang, P.: A New Method of Color Image Segmentation Based on Intensity and Hue Clustering. Int’l Conf. on Pattern Recognition 3, 613–616 (2000)
Partio, M., Cramariuc, B., Gabbouj, M., Visa, A.: Rock Texture Retrieval Using Gray Level Co-occurrence Matrix. In: Proc. of 5th Nordic Signal Processing Symposium (2002)
Singhal, A., Jiebo, L., Weiyu, Z.: Probabilistic spatial context models for scene content understanding. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 235–241 (2003)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2004)
Xuming He., Zemel R. S., Carreira-Perpinan, M. A.: Multiscale conditional random fields for image labeling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 695–702(2004)
Zhang, W., Kosecka, J.: Localization based on building recognition. In: Int’l Conf. on Computer Vision and Pattern Recognition, vol. 3, pp. 21–28 (2005)
Kim, D.N., Trinh, H.H., Jo, K.H.: Object Recognition by Segmented Regions Using Multiple Cues on Outdoor Environment. International Journal of Information Acquisition 4(3), 205–213 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, DN., Trinh, HH., Jo, KH. (2008). Region Segmentation of Outdoor Scene Using Multiple Features and Context Information. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2008. Communications in Computer and Information Science, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85930-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-85930-7_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85929-1
Online ISBN: 978-3-540-85930-7
eBook Packages: Computer ScienceComputer Science (R0)