Abstract
The association of pavement surface damages used to rely on the judgments of the experts. However, with the accumulation of data in the pavement surface maintenance database and the improvement of Data Mining, there are more and more methods available to explore the association of pavement surface damages. This research adopts Apriori algorithm to conduct association analysis on pavement surface damages. From the experience of experts, it has been believed that the association of road damages is complicated. However, through case studies, it has been found that pavement surface damages are caused among longitudinal cracking, alligator cracking and pen-holes, and they are unidirectional influence. In addition, with the help of association rules, it has been learned that, in pavement surface preventative maintenance, the top priority should be the repair of longitudinal cracking and alligator cracking, which can greatly reduce the occurrence of pen-holes and the risk of state compensations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amado, V.: Expanding the Use of Pavement Management Data. In: 2000 MTC Transportation Scholars Conference, Ames, Iowa (2000)
Sarimollaoglu, M., Dagtas, S., Iqbal, K., Bayrak, C.: A Text-Independent Speaker Identification System Using Probabilistic Neural Networks. In: Proceedings of the International Conference on Computing, Communication and Control Technologies CCCT 2004, Austin, Texas, USA, vol. 7, pp. 407–411 (2004)
Nassar, K.: Application of data-mining to state transportation agencies. IT con. 12, 139–149 (2007)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman, San Francisco (2000)
Agrawal, R., Imilienski, T., Swami, A.: Mining association rules between sets of items in large datasets. In: Buneman, P., Jajodia, S. (eds.) Proc. of the 1996 ACM SIGMOD Int’l Conf. on Management of Data, pp. 207–216. ACM Press, New York (1993)
Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic Itemset Counting and Implication Rules for Market Basket Analysis. In: Proceeding of 1997 ACM-SIGMOD (SIGMOD 1997), Tucson, AZ, pp. 255–264 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hung, CT., Chang, JR., Chen, JD., Chou, CC., Chen, SH. (2008). A Research on the Association of Pavement Surface Damages Using Data Mining. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2008. Communications in Computer and Information Science, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85930-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-85930-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85929-1
Online ISBN: 978-3-540-85930-7
eBook Packages: Computer ScienceComputer Science (R0)