Abstract
Recent developments in the fields of business investment, scientific research and information technology have resulted in the collection of massive data which becomes highly useful in finding certain patterns governing the data source. Clustering algorithms are popular in finding hidden patterns and information from such repository of data. The conventional clustering algorithms have difficulties in handling the challenges posed by the collection of natural data which is often vague and uncertain. This paper presents the concept of fuzzy clustering (fuzzy c-means clustering) and shows how it can handle vagueness and uncertainty in comparison with the conventional k-means clustering algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mitra, S., Pal, S.K., Mitra, P.: Data Mining in Soft Computing Framework: A Survey. IEEE Trans. on Neural Networks 13(1), 3–14 (2002)
Cruse, R., Borgelt, C.: Fuzzy Data Analysis Challenges and Perspective, http://citeseer.ist.psu.edu/kruse99fuzzy.html
Au, W.H., Keith, C.C.: Classification with Degree of Membership: A Fuzzy Approach. In: Proc. IEEE International Conf on Data Mining (ICDM 2001), pp. 35–42 (2001)
Halkidi, M.: Quality Assessment and Uncertainty Handling in Data Mining Process, http://citeseer.ist.psu.edu/halkidi00quality.html
Inmon, W.H.: The Data Warehouse and Data Mining. Commn. Of ACM 39(11), 49–50 (1996)
Fayyad, U., Uthurusamy, R.: Data Mining and Knowledge Discovery in Databases. Commn. of ACM 39(11), 24–26 (1996)
Berkhin, P.: Survey of Clustering Data Mining Techniques, http://citeseer.ist.psu.edu/berkhin02survey.html
Chau, M., Cheng, R., Kao, B.: Uncertain Data Mining: A New Research Direction, www.business.hku.hk/~mchau/papers/UncertainDataMining_WSA.pdf
Keith, C.C., Au, W.H., Choi, B.: Mining Fuzzy Rules in a Donor Database for Direct Marketing by a Charitable Organization. In: Proc. of 1st IEEE International Conference on Cognitive Informatics, pp. 239–246 (2002)
Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Elsevier, Amsterdam (2005)
Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs (1988)
Han, J., Kamber, M.: Data Mining Concepts and Techniques. Elsevier, Amsterdam (2003)
Bezdek, J.C.: Fuzzy Mathematics in Pattern Classification, Ph.D. Thesis, Center for Applied Mathematics, Cornell University, Ithica N.Y (1973)
Looney, C.G.: A Fuzzy Clustering and Fuzzy Merging Algorithm, http://citeseer.ist.psu.edu/399498.html
Klawonn, F., Keller, A.: Fuzzy Clustering Based on Modified Distance Measures, http://citeseer.ist.psu.edu/klawonn99fuzzy.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raju, G., Thomas, B., Kumar, T.S., Thinley, S. (2008). Integration of Fuzzy Logic in Data Mining to Handle Vagueness and Uncertainty. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_106
Download citation
DOI: https://doi.org/10.1007/978-3-540-85984-0_106
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85983-3
Online ISBN: 978-3-540-85984-0
eBook Packages: Computer ScienceComputer Science (R0)