Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

  • 2244 Accesses

Abstract

This paper present a cellular automaton (CA) based diffusion model and its application in the edge detection of images. The CA-based diffusion model consists of a regular lattice of cells with local state. These cells interact with their neighbors subject to a uniform rule which governs all cells. By setting the initial condition as an image, the diffusion model can be used as an alternative tool for diffusion equation in image processing. Experimental results showed that the CA-based diffusion model has a steady and convergent dynamical behavior and a better performance than the diffusion equation. This model can detects the image edge more accurately and suppress the noise much better than the classical edge detectors, such as LoG, Laplace, Canny and Sobel operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wongthanavasu, S., Sadananda, R.: A CA-based Edged Operator and Its Performance Evaluation. J. Vis. Comm. and Image Representation 14(2), 83–96 (2003)

    Article  Google Scholar 

  2. Rosin, P.L.: Training Cellular Automata for Image Processing. IEEE T. Image Process 15(7), 2076–2087 (2006)

    Article  Google Scholar 

  3. Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE T. Pattern nal. 12(7), 629–639 (1990)

    Article  Google Scholar 

  4. Toffoli, T., Margolus, N.H.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    Google Scholar 

  5. Chopard, B., Droz, M.: Cellular Automata Model for the Diffusion Equation. J. Statistical Physics 64(3-4), 859–892 (1991)

    Article  MathSciNet  Google Scholar 

  6. Koenderink, J.: The Structure of Images. Biol. Cybern. 50(5), 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Abdou, I.E., Pratt, W.K.: Quantitative Design and Evaluation of Enhancement/ Thresholding Edge Detectors. Proc. IEEE 67(5), 753–763 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Yan, Z. (2008). A Cellular Automatic Method for the Edge Detection of Images. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics