Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

  • 2214 Accesses

Abstract

In this paper, followed the assumption that the gene expression data of tumor may be sampled from the data with a probability distribution on a sub-manifold of ambient space, a supervised version of locally linear embedding (LLE), named locally linear discriminant embedding (LLDE), is proposed for tumor classification. In the proposed algorithm, we construct a vector translation and distance rescaling model to enhance the recognition ability of the original LLE from two aspects. To validate the efficiency, the proposed method is applied to classify two different DNA microarray datasets. The prediction results show that our method is efficient and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bai, X.M., Yin, B.C., Shi, Q., Sun, Y.F.: Face Recognition Based on Supervised Locally Linear Embedding Method. J. Inform. Comput. Sci. 4, 641–646 (2005)

    Google Scholar 

  2. Cordero, F., Botta, M., Calogero, R.A.: Microarray Data Analysis and Mining Approaches. Briefings in Functional Genomics and Proteomics 6(4), 265–281 (2007)

    Article  Google Scholar 

  3. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector Machines Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinform 16, 906–914 (2000)

    Article  Google Scholar 

  4. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  5. Huang, D.S., Zheng, C.H.: Independent Component Analysis Based Penalized Discriminant Method for Tumor Classification Using Gene Expression Data. Bioinformatics 22(15), 1855–1862 (2006)

    Article  Google Scholar 

  6. Kokiopoulou, E., Saad, Y.: Orthogonal Neighborhood Perserving Projections. In: Proceedings of the Fifth IEEE international Conference on Data Mining, pp. 1–7 (2005)

    Google Scholar 

  7. Li, H.F., Jiang, T., Zhang, K.S.: Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE transaction on neural networks 17(1), 157–165 (2006)

    Article  Google Scholar 

  8. Liao, J.G., Chin, K.V.: Logistic Regression for Disease Classification Using Microarray Data: Model Selection in A Large P and Small N Case. Bioinformatics 23(15), 1945–1951 (2007)

    Article  Google Scholar 

  9. Nguyen, D.V., Rocke, D.M.: Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data. Bioinformatics 18(1), 39–50 (2002)

    Article  Google Scholar 

  10. Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., et al.: Gene Expression-Based Classification of Malignant Gliomas Correlates Better with Survival than Histological Classification. Cancer Res. 63, 1602–1607 (2003)

    Google Scholar 

  11. Pillati, M., Viroli, C.: Supervised Locally Linear Embedding for Classification: An Application to Gene Expression Data Analysis. In: Proceedings of 29th Annual Conference of the of the German Classification Society (GfKl 2005), pp. 15–18 (2005)

    Google Scholar 

  12. Ridder, D., Duin, R.P.W.: Locally Linear Embedding for Classification. Technical Report PH-2002-01, Pattern Recognition Group, Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, CH., Li, B., Zhang, L., Wang, HQ. (2008). Locally Linear Discriminant Embedding for Tumor Classification. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_131

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_131

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics