Abstract
In this paper, followed the assumption that the gene expression data of tumor may be sampled from the data with a probability distribution on a sub-manifold of ambient space, a supervised version of locally linear embedding (LLE), named locally linear discriminant embedding (LLDE), is proposed for tumor classification. In the proposed algorithm, we construct a vector translation and distance rescaling model to enhance the recognition ability of the original LLE from two aspects. To validate the efficiency, the proposed method is applied to classify two different DNA microarray datasets. The prediction results show that our method is efficient and feasible.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bai, X.M., Yin, B.C., Shi, Q., Sun, Y.F.: Face Recognition Based on Supervised Locally Linear Embedding Method. J. Inform. Comput. Sci. 4, 641–646 (2005)
Cordero, F., Botta, M., Calogero, R.A.: Microarray Data Analysis and Mining Approaches. Briefings in Functional Genomics and Proteomics 6(4), 265–281 (2007)
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector Machines Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinform 16, 906–914 (2000)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)
Huang, D.S., Zheng, C.H.: Independent Component Analysis Based Penalized Discriminant Method for Tumor Classification Using Gene Expression Data. Bioinformatics 22(15), 1855–1862 (2006)
Kokiopoulou, E., Saad, Y.: Orthogonal Neighborhood Perserving Projections. In: Proceedings of the Fifth IEEE international Conference on Data Mining, pp. 1–7 (2005)
Li, H.F., Jiang, T., Zhang, K.S.: Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE transaction on neural networks 17(1), 157–165 (2006)
Liao, J.G., Chin, K.V.: Logistic Regression for Disease Classification Using Microarray Data: Model Selection in A Large P and Small N Case. Bioinformatics 23(15), 1945–1951 (2007)
Nguyen, D.V., Rocke, D.M.: Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data. Bioinformatics 18(1), 39–50 (2002)
Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., et al.: Gene Expression-Based Classification of Malignant Gliomas Correlates Better with Survival than Histological Classification. Cancer Res. 63, 1602–1607 (2003)
Pillati, M., Viroli, C.: Supervised Locally Linear Embedding for Classification: An Application to Gene Expression Data Analysis. In: Proceedings of 29th Annual Conference of the of the German Classification Society (GfKl 2005), pp. 15–18 (2005)
Ridder, D., Duin, R.P.W.: Locally Linear Embedding for Classification. Technical Report PH-2002-01, Pattern Recognition Group, Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheng, CH., Li, B., Zhang, L., Wang, HQ. (2008). Locally Linear Discriminant Embedding for Tumor Classification. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_131
Download citation
DOI: https://doi.org/10.1007/978-3-540-85984-0_131
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85983-3
Online ISBN: 978-3-540-85984-0
eBook Packages: Computer ScienceComputer Science (R0)