Abstract
This paper discusses a risk-sensitive portfolio problem, where the objective function is defined by randomness and fuzziness, and it introduces the perception-based extension of the expectation and the variance for fuzzy random variables. Fuzzy random variables are estimated by mean and variance with λ-mean functions and evaluation weights: A possibility-necessity weight ν for subjective estimation, and a pessimistic-optimistic index λ for subjective decision. A solution of the risk-sensitive portfolio problem is derived by quadratic programming approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carlsson, C., Fullér, R.: On Possibilistic Mean Value and Variance of Fuzzy Numbers. Fuzzy Sets and Systems, pp. 315–326 (2001)
Feng, Y., Hu, L., Su, H.: The Variance and Covariance of Fuzzy Random Variables. Fuzzy Sets and Systems, pp. 487–497 (2001)
Fortemps, P., Roubens, M.: Ranking and Defuzzification Methods Based on Area Compensation. Fuzzy Sets and Systems, pp. 319–330 (1996)
Kruse, R., Meyer, K.D.: Statistics with Vague Data. Riedel Publ. Co., Dortrecht (1987)
Inuiguchi, M., Tanino, T.: Portfolio Selection under Independent Possibilistic Information. Fuzzy Sets and Systems, pp. 83–92 (2000)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, London (1995)
Kwakernaak, H.: Fuzzy Random Variables – I. Definitions and Theorem. Inform. Sci., 1–29 (1978)
Markowits, H.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell Publ., Oxford (1990)
Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell Publ., New York (1997)
Puri, M.L., Ralescu, D.A.: Fuzzy Random Variables. J. Math. Anal. Appl. 114, 409–422 (1986)
Yoshida, Y.: A Mean Estimation of Fuzzy Numbers by Evaluation Measures. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214, pp. 1222–1229. Springer, Heidelberg (2004)
Yoshida, Y.: Mean values, Measurement of Fuzziness and Variance of Fuzzy Random Variables for Fuzzy Optimization. In: Proc. SCIS & ISIS, pp. 2277–2282 (2006)
Yoshida, Y.: Fuzzy Extension of Estimations with Randomness: The Perception-based Approach. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 295–306. Springer, Heidelberg (2007)
Zadeh, L.A.: Fuzzy Sets. Inform. and Control, 338–353 (1965)
Zadeh, L.A.: Toward a Perception-Based Theory of Probabilistic Reasoning with Imprecise Probabilities. J. Stat. Plan. Infer., 233–264 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yoshida, Y. (2008). A Risk-Sensitive Portfolio with Mean and Variance of Fuzzy Random Variables. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-85984-0_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85983-3
Online ISBN: 978-3-540-85984-0
eBook Packages: Computer ScienceComputer Science (R0)