Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

  • 1638 Accesses

Abstract

The effect of aging varies in different facial regions. The significance of regions’ age related changes also differs in each age range. In this paper, an efficient subset is selected from all possible rectangle regions in the face image to form a global ensemble on the whole age range. Age range-based selective ensembles are also formed in a similar way. Based on those selective ensembles, a two-step selective region ensemble method is proposed for age estimation. In this framework, the first step is using the global ensemble to give a prediction of possible age range. The second step is to use the ensemble on the predicted age range to make a final estimation. Experiments show that using selective region ensemble can improve age estimation performance, and age range-based selective region ensemble is even superior to the global ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brunelli, R., Poggio, T.: Face Recognition: Feature versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)

    Article  Google Scholar 

  2. Edwards, G.J., Lanitis, A., Cootes, C.J.: Statistical Face Models: Improving Specificity. Image Vision Comput. 16(3), 203–211 (1998)

    Article  Google Scholar 

  3. Hayashi, J., Yasumoto, M., Ito, H., Koshimizu, H.: Age and Gender Estimation Based on Wrinkle Texture and Color of Facial Images. In: 16th International Conference on Pattern Recognition, pp. 405–408. IEEE Press, Quebec (2002)

    Google Scholar 

  4. Horng, W.B., Lee, C.P., Chen, C.W.: Classification of Age Groups Based on Facial Features. Tamkang Journal of Science and Engineering 4(3), 183–192 (2001)

    Google Scholar 

  5. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, and Active Learning. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 233–238. MIT Press, Cambridge (1995)

    Google Scholar 

  6. Kwon, Y.H., Lobo, N.V.: Age Classification from Facial Images. Computer Vision and Image Understanding 74(1), 1–21 (1999)

    Article  Google Scholar 

  7. Lanitis, A.: On the Siginificance of Different Facial Parts for Automatic Age Estimation. In: 14th International Conference on Digital Signal Processing, vol. 2, pp. 1027–1030. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  8. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward Automatic Simulation of Aging Effects on Face Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 442–455 (2002)

    Article  Google Scholar 

  9. Pentland, A., Moghaddam, B., Starner, T.: View-based and Modular Eigenspaces for Face Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 84–91. IEEE Press, Seattle (1994)

    Chapter  Google Scholar 

  10. Xin, G., Zhou, Z.H.: Image Region Selection and Ensemble for Face Recognition. J. Comput. Sci. & Technol. 21(1), 116–125 (2006)

    Article  Google Scholar 

  11. Xin, G., Zhou, Z.H., Smith-Miles, K.: Automatic Age Estimation Based on Facial Aging Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  12. Yun, F., Ye, X., Huang, T.S.: Estimating Human Age by Manifold Analysis of Face Pictures and Regression on Aging Features. In: 2007 IEEE International Conference on Multimedia and Expo., pp. 1383–1386. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  13. Zhou, Z.H., Wu, J.X., Jiang, Y., Chen, S.F.: Genetic Algorithm Based Selective Neural Network Ensemble. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA, vol. 2, pp. 797–802 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben, S., Su, G., Wu, Y. (2008). A Two-Step Selective Region Ensemble for Facial Age Estimation. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics