Skip to main content

A Reinforcement Learning Automata Optimization Approach for Optimum Tuning of PID Controller in AVR System

  • Conference paper
Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence (ICIC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

Abstract

In this paper, an efficient optimization method based on reinforcement learning automata (RLA) for optimum parameters setting of conventional proportional-integral-derivative (PID) controller for AVR system of power synchronous generator is proposed. The proposed method is Continuous Action Reinforcement Learning Automata (CARLA) which is able to explore and learn to improve control performance without the knowledge of the analytical system model. This paper demonstrates the full details of the CARLA technique and compares its performance with Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) as two famous evolutionary optimization methods. The simulation results show the superior efficiency and performance of the proposed method in regard to other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Santos, M., de la Cruz, J.M.: Between Fuzzy-PID and PID-Conventional Controllers: a Good Choice, 123–127 (1996)

    Google Scholar 

  2. Visioli, A.: Tuning Of PID Controllers with Fuzzy Logic. Instrument Electrical Engineering Control Theory Application 148(1), 1–8 (2001)

    MathSciNet  Google Scholar 

  3. Ziegler, J., Nichols, G.: Optimum Setting for Automatic Controllers. Transactions of ASME 64(1), 759–768 (1942)

    Google Scholar 

  4. Seng, T.L., Khalid, M.B., Yusof, R.: Tuning of a Neuro-Fuzzy Controller by Genetic Algorithm. IEEE Transaction on System, Man, Cybernetic 29, 226–236 (1999)

    Article  Google Scholar 

  5. Kawabe, T., Tagami, T.: A Real Coded Genetic Algorithm for Matrix Inequality Design Approach of Robust PID Controller with Two Degrees of Freedom. In: 12th IEEE International Symposium on Intelligent Control, Istanbul, Turkey, pp. 119–124 (1997)

    Google Scholar 

  6. Krohling, R.A., Jaschek, H., Rey, J.P.: Designing PI/PID Controller For A Motion Control System Based on Genetic Algorithm. In: 12th IEEE International Symposium on Intelligent Control, Istanbul, Turkey, pp. 125–130 (1997)

    Google Scholar 

  7. Kwok, D.P., Sheng, F.: Genetic Algorithm and Simulated Annealing for Optimal Robot Arm PID Control. In: IEEE Conference of Evolutionary Computation, Orlando, FL, pp. 707–713 (1994)

    Google Scholar 

  8. Ota, T., Omatu, S.: Tuning of The PID Control Gains By GA. In: IEEE Conference of Emerging Technology Factory Automation, Kauai, HI, pp. 272–274 (1996)

    Google Scholar 

  9. Jones, A.H., Oliveira, P.B.D.: Genetic Auto-Tuning of PID Controllers. In: Instrument Electrical Engineering Conference on Genetic Algorithm and Engineering System Innovations Application, pp. 141–145 (1995)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  11. Yoshida, H., Kawata, K., Fukuyama, Y.: A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment. IEEE Transaction on Power Systems 15, 1232–1239 (2000)

    Article  Google Scholar 

  12. Howell, M.N., Frost, G.P., Gordon, T.J., Wu, Q.H.: Continuous Action Reinforcement Learning Applied to Vehicle Suspension Control. Mechatronics 7(3), 263–276 (1997)

    Article  Google Scholar 

  13. Gaing, Z.L.: A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions On Energy Conversion 19(2), 384–391 (2004)

    Article  Google Scholar 

  14. Howell, M.N., Best, M.C.: On-Line PID Tuning for Engine Idle-Speed Control Using Continuous Action Reinforcement Learning Automata. Control Engineering Practice 8, 147–154 (2000)

    Article  Google Scholar 

  15. Howell, M.N., Gordon, T.J.: Continuous Action Reinforcement Learning Automata and Their Application to Adaptive Digital Filter Design. In: Engineering Applications of Artificial Intelligence, pp. 549–562. Elsevier Science Ltd., Amsterdam (2001)

    Google Scholar 

  16. Saadat, H.: Power System Analysis. McGraw-Hill, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kashki, M., Abdel-Magid, Y.L., Abido, M.A. (2008). A Reinforcement Learning Automata Optimization Approach for Optimum Tuning of PID Controller in AVR System. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics