Skip to main content

Novel Phylogenetic Network Inference by Combining Maximum Likelihood and Hidden Markov Models

(Extended Abstract)

  • Conference paper
Algorithms in Bioinformatics (WABI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5251))

Included in the following conference series:

  • 999 Accesses

Abstract

Horizontal Gene Transfer (HGT) is the event of transferring genetic material from one lineage in the evolutionary tree to a different lineage. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Although the prevailing assumption is of complete HGT, cases of partial HGT (which are also named chimeric HGT) where only part of a gene is horizontally transferred, have also been reported, albeit less frequently.

In this work we suggest a new probabilistic model for analyzing and modeling phylogenetic networks, the NET-HMM. This new model captures the biologically realistic assumption that neighboring sites of DNA or amino acid sequences are not independent, which increases the accuracy of the inference. The model describes the phylogenetic network as a Hidden Markov Model (HMM), where each hidden state is related to one of the network’s trees. One of the advantages of the NET-HMM is its ability to infer partial HGT as well as complete HGT. We describe the properties of the NET-HMM, devise efficient algorithms for solving a set of problems related to it, and implement them in software. We also provide a novel complementary significance test for evaluating the fitness of a model (NET-HMM) to a given data set.

Using NET-HMM we are able to answer interesting biological questions, such as inferring the length of partial HGT’s and the affected nucleotides in the genomic sequences, as well as inferring the exact location of HGT events along the tree branches. These advantages are demonstrated through the analysis of synthetical inputs and two different biological inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addario-Berry, L., Hallett, M., Lagergren, J.: Towards identifying lateral gene transfer events. In: PSB 2003, pp. 279–290 (2003)

    Google Scholar 

  2. Bergthorsson, U., Adams, K., Thomason, B., Palmer, J.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

    Article  Google Scholar 

  3. Birin, H., Gal-Or, Z., Elias, I., Tuller, T.: Inferring horizontal transfers in the presence of rearrangements by the minimum evolution criterion. Bioinformatics 24(6), 826–832 (2008)

    Article  Google Scholar 

  4. Boc, A., Makarenkov, V.: New efficient algorithm for detection of horizontal gene transfer events. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 190–201. Springer, Heidelberg (2003)

    Google Scholar 

  5. Delwiche, C., Palmer, J.: Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13(6) (1996)

    Google Scholar 

  6. Doolittle, W.F., Boucher, Y., Nesbo, C.L., Douady, C.J., Andersson, J.O., Roger, A.J.: How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. Lond. B. Biol. Sci. 358, 39–57 (2003)

    Article  Google Scholar 

  7. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Paulsen, I.T., et al.: Role of mobile DNA in the evolution of Vacomycin-resistant Enterococcus faecalis. Science 299(5615), 2071–2074 (2003)

    Article  Google Scholar 

  9. Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  Google Scholar 

  10. Hallett, M., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: RECOMB 2001, pp. 149–156. ACM Press, New York (2001)

    Chapter  Google Scholar 

  11. Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: Proceedings of the eighth annual international conference on Research in computational molecular biology, pp. 347–356 (2004)

    Google Scholar 

  12. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–200 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Husmeier, D., McGuire, G.: Detecting recombination with MCMC. Bioinformatics 18, 345–353 (2002)

    Article  Google Scholar 

  14. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006)

    Article  Google Scholar 

  15. Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44(4), 383–397 (1997)

    Article  Google Scholar 

  16. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)

    Article  Google Scholar 

  17. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: A case study. Mol. Biol. Evol. 24(1), 324–337 (2007)

    Article  Google Scholar 

  18. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing the parsimony score of phylogenetic networks: Theoretical bounds and empirical performance. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 61–72. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Parsimony score of phylogenetic networks: Hardness results and a linear-time heuristic (submitted, 2008)

    Google Scholar 

  20. Judd, W.S., Olmstead, R.G.: A survey of tricolpate (eudicot) phylogenetic relationships. Am. J. Bot. 91, 1627–1644 (2004)

    Article  Google Scholar 

  21. Jukes, T., Cantor, C.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian protein metabolism, pp. 21–132 (1969)

    Google Scholar 

  22. Matte-Tailliez, O., Brochier, C., Forterre, P., Philippe, H.: Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19(5), 631–639 (2002)

    Google Scholar 

  23. Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: A Fast and Accurate Heuristic for Reconstructing Horizontal Gene Transfer. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Pupko, T., Huchon, D., Cao, Y., Okada, N., Hasegawa, M.: Combining multiple datasets in a likelihood analysis: which models are best. Mol. Biol. Evol. 19(12), 2294–2307 (2002)

    Google Scholar 

  25. Ragan, M.A.: On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201(2), 187–191 (2001)

    Article  Google Scholar 

  26. Richardson, A.O., Palmer, J.D.: Horizontal gene transfer in plants. J. Exp. Bot. 58(1), 1–9 (2007)

    Article  Google Scholar 

  27. Siepel, A., Haussler, D.: Combining phylogenetic and hidden markov models in biosequence analysis. In: RECOMB 2003, pp. 277–286 (2003)

    Google Scholar 

  28. Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17(6), 875–881 (2000)

    Google Scholar 

  29. von Haeseler, A., Churchill, G.A.: Network models for sequence evolution. J. Mol. Evol. 37, 77–85 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith A. Crandall Jens Lagergren

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Snir, S., Tuller, T. (2008). Novel Phylogenetic Network Inference by Combining Maximum Likelihood and Hidden Markov Models. In: Crandall, K.A., Lagergren, J. (eds) Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science(), vol 5251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87361-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87360-0

  • Online ISBN: 978-3-540-87361-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics