Skip to main content

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks

  • Conference paper
Recent Advances in Intrusion Detection (RAID 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5230))

Included in the following conference series:

Abstract

Since the seminal 1998/1999 DARPA evaluations of intrusion detection systems, network attacks have evolved considerably. In particular, after the CodeRed worm of 2001, the volume and sophistication of self-propagating malicious code threats have been increasing at an alarming rate. Many anomaly detectors have been proposed, especially in the past few years, to combat these new and emerging network attacks. At this time, it is important to evaluate existing anomaly detectors to determine and learn from their strengths and shortcomings. In this paper, we evaluate the performance of eight prominent network-based anomaly detectors under malicious portscan attacks. These ADSs are evaluated on four criteria: accuracy (ROC curves), scalability (with respect to varying normal and attack traffic rates, and deployment points), complexity (CPU and memory requirements during training and classification,) and detection delay. These criteria are evaluated using two independently collected datasets with complementary strengths. Our results show that a few of the anomaly detectors provide high accuracy on one of the two datasets, but are unable to scale their accuracy across the datasets. Based on our experiments, we identify promising guidelines to improve the accuracy and scalability of existing and future anomaly detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Symantec Internet Security Threat Reports I–XI (January 2002–January 2008)

    Google Scholar 

  2. McAfee Corp., McAfee Virtual Criminology Report: North American Study into Organized Crime and the Internet (2005)

    Google Scholar 

  3. Computer Economics: Economic Impact of Malicious Code Attacks (2001), http://www.computereconomics.com/cei/press/pr92101.html

  4. Williamson, M.M.: Throttling viruses: Restricting propagation to defeat malicious mobile code. In: ACSAC (2002)

    Google Scholar 

  5. Twycross, J., Williamson, M.M.: Implementing and testing a virus throttle. In: Usenix Security (2003)

    Google Scholar 

  6. Sellke, S., Shroff, N.B., Bagchi, S.: Modeling and automated containment of worms. In: DSN (2005)

    Google Scholar 

  7. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using sequential hypothesis testing. In: IEEE Symp. Sec. and Priv. (2004)

    Google Scholar 

  8. Schechter, S.E., Jung, J., Berger, A.W.: Fast detection of scanning worm infections. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 59–81. Springer, Heidelberg (2004)

    Google Scholar 

  9. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms. In: Usenix Security (2004)

    Google Scholar 

  10. Chen, S., Tang, Y.: Slowing Down Internet Worms. In: IEEE ICDCS (2004)

    Google Scholar 

  11. Ganger, G., Economou, G., Bielski, S.: Self-Securing Network Interfaces: What, Why, and How. Carnegie Mellon University Technical Report, CMU-CS-02-144 (2002)

    Google Scholar 

  12. Mahoney, M.V., Chan, P.K.: PHAD: Packet Header Anomaly Detection for Indentifying Hostile Network Traffic. Florida Tech. technical report CS-2001-4 (2001)

    Google Scholar 

  13. Mahoney, M.V., Chan, P.K.: Learning Models of Network Traffic for Detecting Novel Attacks. Florida Tech. technical report CS-2002-08 (2002)

    Google Scholar 

  14. Mahoney, M.V., Chan, P.K.: Network Traffic Anomaly Detection Based on Packet Bytes. In: ACM SAC (2003)

    Google Scholar 

  15. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide traffic anomalies in traffic flows. In: ACM Internet Measurement Conference (IMC) (2004)

    Google Scholar 

  16. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In: ACM SIGCOMM (2004)

    Google Scholar 

  17. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. In: ACM SIGCOMM (2005)

    Google Scholar 

  18. Soule, A., Salamatian, K., Taft, N.: Combining Filtering and Statistical methods for anomaly detection. In: ACM/Usenix IMC (2005)

    Google Scholar 

  19. Zou, C.C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning of Internet worms. In: ACM CCS (2003)

    Google Scholar 

  20. Gu, Y., McCullum, A., Towsley, D.: Detecting anomalies in network traffic using maximum entropy estimation. In: ACM/Usenix IMC (2005)

    Google Scholar 

  21. Next-Generation Intrusion Detection Expert System (NIDES), http://www.csl.sri.com/projects/nides/

  22. Peakflow-SP and Peakflow-X, http://www.arbornetworks.com/peakflowsp , http://www.arbornetworks.com/peakflowx

  23. Cisco IOS Flexible Network Flow, http://www.cisco.com/go/netflow

  24. LBNL/ICSI Enterprise Tracing Project, http://www.icir.org/enterprise-tracing/download.html

  25. WisNet ADS Comparison Homepage, http://wisnet.niit.edu.pk/projects/adeval

  26. Wong, C., Bielski, S., Studer, A., Wang, C.: Empirical Analysis of Rate Limiting Mechanisms. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 22–42. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Shafiq, M.Z., Khayam, S.A., Farooq, M.: Improving Accuracy of Immune-inspired Malware Detectors by using Intelligent Features. In: ACM GECCO (2008)

    Google Scholar 

  28. Ingham, K.L., Inoue, H.: Comparing Anomaly Detection Techniques for HTTP. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 42–62. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. In: SIAM SDM (2003)

    Google Scholar 

  30. Mueller, P., Shipley, G.: Dragon claws its way to the top. In: Network Computing (2001), http://www.networkcomputing.com/1217/1217f2.html

  31. The NSS Group: Intrusion Detection Systems Group Test (Edition 2) (2001), http://nsslabs.com/group-tests/intrusion-detection-systems-ids-group-test-edition-2.html

  32. Yocom, B., Brown, K.: Intrusion battleground evolves, Network World Fusion (2001), http://www.nwfusion.com/reviews/2001/1008bg.html

  33. Lippmann, R.P., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA OffLine Intrusion Detection Evaluation. Comp. Networks 34(2), 579–595 (2000)

    Article  Google Scholar 

  34. Durst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L.: Testing and Evaluating Computer Intrusion Detection Systems. Comm. of the ACM 42(7), 53–61 (1999)

    Article  Google Scholar 

  35. Shipley, G.: ISS RealSecure Pushes Past Newer IDS Players. In: Network Computing (1999), http://www.networkcomputing.com/1010/1010r1.html

  36. Shipley, G.: Intrusion Detection, Take Two. In: Network Computing (1999), http://www.nwc.com/1023/1023f1.html

  37. Roesch, M.: Snort – Lightweight Intrusion Detection for Networks. In: USENIX LISA (1999)

    Google Scholar 

  38. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D., Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.: Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion Detection Evaluation. In: DISCEX, vol. (2), pp. 12–26 (2000)

    Google Scholar 

  39. DARPA-sponsored IDS Evaluation (1998 and 1999). MIT Lincoln Lab, Cambridge, www.ll.mit.edu/IST/ideval/data/data_index.html

  40. Debar, H., Dacier, M., Wespi, A., Lampart, S.: A workbench for intrusion detection systems. IBM Zurich Research Laboratory (1998)

    Google Scholar 

  41. Denmac Systems, Inc.: Network Based Intrusion Detection: A Review of Technologies (1999)

    Google Scholar 

  42. Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection. Secure Networks, Inc. (1998)

    Google Scholar 

  43. Aguirre, S.J., Hill, W.H.: Intrusion Detection Fly-Off: Implications for the United States Navy. MITRE Technical Report MTR 97W096 (1997)

    Google Scholar 

  44. Puketza, N., Chung, M., Olsson, R.A., Mukherjee, B.: A Software Platform for Testing Intrusion Detection Systems. IEEE Software 14(5), 43–51 (1997)

    Article  Google Scholar 

  45. Puketza, N.F., Zhang, K., Chung, M., Mukherjee, B., Olsson, R.A.: A Methodology for Testing Intrusion Detection Systems. IEEE Trans. Soft. Eng. 10(22), 719–729 (1996)

    Article  Google Scholar 

  46. Mell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M.: An Overview of Issues in Testing Intrusion Detection Systems. NIST IR 7007 (2003)

    Google Scholar 

  47. McHugh, J.: The 1998 Lincoln Laboratory IDS Evaluation (A Critique). In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  48. Mahoney, M.V., Chan, P.K.: An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 220–237. Springer, Heidelberg (2003)

    Google Scholar 

  49. Pang, R., Allman, M., Paxson, V., Lee, J.: The Devil and Packet Trace Anonymization. In: ACM CCR, vol. 36(1) (2006)

    Google Scholar 

  50. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A First Look at Modern Enterprise Traffic. In: ACM/USENIX IMC (2005)

    Google Scholar 

  51. Winpcap homepage, http://www.winpcap.org/

  52. Symantec Security Response, http://securityresponse.symantec.com/avcenter

  53. Shannon, C., Moore, D.: The spread of the Witty worm. IEEE Sec & Priv 2(4), 46–50 (2004)

    Article  Google Scholar 

  54. Axelsson, S.: Intrusion Detection Systems: A Survey and Taxonomy. Technical Report 99-15, Chalmers University (2000)

    Google Scholar 

  55. Ringberg, H., Rexford, J., Soule, A., Diot, C.: Sensitivity of PCA for Traffic Anomaly Detection. In: ACM SIGMETRICS (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Lippmann Engin Kirda Ari Trachtenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ashfaq, A.B., Robert, M.J., Mumtaz, A., Ali, M.Q., Sajjad, A., Khayam, S.A. (2008). A Comparative Evaluation of Anomaly Detectors under Portscan Attacks. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds) Recent Advances in Intrusion Detection. RAID 2008. Lecture Notes in Computer Science, vol 5230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87403-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87403-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87402-7

  • Online ISBN: 978-3-540-87403-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics