Skip to main content

A Ticking Clock: Performance Analysis of a Circadian Rhythm with Stochastic Process Algebra

  • Conference paper
Computer Performance Engineering (EPEW 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5261))

Included in the following conference series:

  • 278 Accesses

Abstract

We apply performance analysis techniques to a biological modelling problem, that of capturing and reproducing the Circadian rhythm. A Circadian rhythm provides cells with a clock by which to regulate their behaviour. We consider two distinct stochastic models of the Circadian rhythm – one unbounded and the other bounded. We consider a fluid approximation of the models, and, by conversion to a set of ordinary differential equations, we are able to reproduce the correct rhythm. We show that with a bounded model, the clock phase can be affected by modifying the ability to manufacture some proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. PNAS 99, 5988–5992 (2002)

    Article  Google Scholar 

  2. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Nature 403, 267–268 (2000)

    Google Scholar 

  3. Priami, C.: A stochastic π-calculus. In: Gilmore, S., Hillston, J. (eds.) Process Algebra and Performance Modelling Workshop, June 1995. The Computer Journal, vol. 38(7), pp. 578–589. CEPIS, Edinburgh (1995)

    Google Scholar 

  4. Hillston, J.: A Compositional Approach to Performance Modelling. Distinguished Dissertations in Computer Science, vol. 12. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  5. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST 2005, Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems, Torino, September 2005, pp. 33–42. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  6. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm attacks using continuous state-space approximation of process algebra models. Journal of Computer and System Sciences (in press, July 2007)

    Google Scholar 

  7. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Computation 100, 1–40 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Google Scholar 

  9. Bowman, H., Bryans, J.W., Derrick, J.: Analysis of a multimedia stream using stochastic process algebras. The Computer Journal 44(4), 230–245 (2001)

    Article  MATH  Google Scholar 

  10. Fourneau, J.M., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular networks using PEPA. Performance Evaluation 50, 83–99 (2002)

    Article  MATH  Google Scholar 

  11. Thomas, N., Bradley, J.T., Knottenbelt, W.J.: Stochastic analysis of scheduling strategies in a GRID-based resource model. IEE Software Engineering 151, 232–239 (2004)

    Article  Google Scholar 

  12. Holton, D.R.W.: A PEPA specification of an industrial production cell. In: Gilmore, S., Hillston, J. (eds.) PAPM 1995, Proceedings of the 3rd International Workshop on Process Algebra and Performance Modelling, Edinburgh, June 1995. The Computer Journal, vol. 38(7), pp. 542–551. OUP (1995)

    Google Scholar 

  13. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler. In: Kotsis, G. (ed.) MASCOTS 2003, Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, pp. 344–351. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  14. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391, 190–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM 21, 666–677 (1978)

    Article  MATH  Google Scholar 

  16. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for biochemical networks. In: Cannata, N., Merelli, E. (eds.) FBTC 2007, Proc. of the From Biology To Concurrency and Back, July 2008. Electronic Notes in Theoretical Computer Science, vol. 194(3), pp. 103–117. Elsevier, Amsterdam (2008)

    Google Scholar 

  17. Degasperi, A., Gilmore, S.T.: Sensitivity analysis of stochastic models of bistable biochemical reactions. In: Bernardo, M., et al. (eds.) SFM 2008. LNCS, vol. 5016, pp. 1–20. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nigel Thomas Carlos Juiz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bradley, J.T. (2008). A Ticking Clock: Performance Analysis of a Circadian Rhythm with Stochastic Process Algebra. In: Thomas, N., Juiz, C. (eds) Computer Performance Engineering. EPEW 2008. Lecture Notes in Computer Science, vol 5261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87412-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87412-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87411-9

  • Online ISBN: 978-3-540-87412-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics