Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

  • 1716 Accesses

Abstract

Pancreas cancer is one of the most fatal among the cancers. The mortality rate is high due to the lack of tools for proper diagnosis and effective therapeutics. Identification of changes in gene expression in pancreas cancer may lead to the development of novel tools for diagnosis and effective treatment methodology. In this paper we present an association rule mining approach to identify the association between the genes that are either over expressed or under expressed in pancreas cancer compared to normal pancreas. We have used the SAGE data related to pancreas cancer. It is expected that the results will help in developing better treatment methodology for pancreas cancer and also for designing a low cost microarray chip for diagnosing pancreas cancer. The results have been validated in terms of Gene Ontology and the signature genes have been identified that match with published data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, May, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases (September 1994)

    Google Scholar 

  3. Houtsma, M., Swami, A.: Set-Oriented Mining for Association Rules in Relational DataBases. In: IEEE 11th International Conference on Data Engineering, pp. 25–33 (1995)

    Google Scholar 

  4. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong-Association-Rule Mining for Large-Scale Gene-Expression Data Analysis: A Case Study on Human SAGE Data. Genome Biol. 3, 1–16 (2002)

    Article  Google Scholar 

  5. Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19, 79–86 (2003)

    Article  Google Scholar 

  6. Tara, M., Chawla, S.: High–Confidence Rule Mining for Microarray Analysis. IEEE Transactions on Computational Biology and Bioinformatics 4(4), 611–623 (2007)

    Article  Google Scholar 

  7. Seeja, K.R., Alam, M.A., Jain, S.K.: A Closed Frequent Itemset Mining Algorithm for Gene Expression Databases. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Chemoinformatics, July, pp. 30–35 (2008)

    Google Scholar 

  8. Mahdi, A., Mohammad, H.S., Gholamhossein, D.: Parallel Mining of Association Rules from Gene Expression Databases. In: Fourth International Conference on Fuzzy systems and Knowledge Discovery (2007)

    Google Scholar 

  9. Jiang, X.R., Le, G.: Microarray Gene Expression data association rules Mining Based on JG-Tree. In: proceedings of the 14th International Workshop on Database and Expert Systems Applications (2003)

    Google Scholar 

  10. Pedro, C.S., Monica, C., Andres, R., Oswaldo, T., Jose, M.C., Alberto, P.-M.: Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics 7, 54 (2006)

    Article  Google Scholar 

  11. Dharmesh, T., Crolina, R., Elizabeth, F.R.: Hypothesis-Driven specialization of Gene Expression Association Rules. In: IEEE International Conference on Bioinformatics and Biomedicine (2007)

    Google Scholar 

  12. Balis, R., Jany, B.: Identification of Disease Genes by Expression Profiling. European Respiratory Journal 18, 882–889 (2001)

    Article  Google Scholar 

  13. François, R., Céline, R., Sylvain, B., Bruno, C., Olivier, G., Boulicaut, J.F.: Mining Concepts from Large SAGE Gene Expression Matrices. In: Proceedings of 2nd International workshop on Knowledge Discovery in Inductive Databases, September 22, pp. 107–118 (2003)

    Google Scholar 

  14. Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.W.: Serial analysis of gene expression. Science 270, 484–487 (1995)

    Article  Google Scholar 

  15. Renu, T., Narendra, T.: Serial Analysis of Gene Expression: Applications in Human Studies. Journal of Biomedicine and Biotechnology 2004(2), 113–120 (2004)

    Article  Google Scholar 

  16. Hustinx, S.R., Cao, D., Maitra, A., Sato, N., Martin, S.T., Sudhir, D., Iacobuzio-Donahue, C., Cameron, J., Yeo, C., Kern, S., Goggins, M., Mollenhauer, J., Pandey, A., Hruban, R.H.: Differentially Expressed Genes in Pancreatic Ductal Adenocarcinomas Identified through Serial Analysis of Gene Expression. Cancer Biology and Therapy 3, 1254–1261 (2004)

    Article  Google Scholar 

  17. Byungwoo, R.y., Jessa, J., Natalie, J., Parmigiani, B.G., Hollingsworth, M.A., Hruban, R.H., Kern, S.E.: Relationships and Differentially Expressed Genes among Pancreatic Cancers Examined by Large-scale Serial Analysis of Gene Expression. Cancer Research 62, 819–826 (2002)

    Google Scholar 

  18. Iacobuzio-Donahue, C., Maitra, A., Shen-Ong, G., et al.: Discovery of Novel Tumor Markers of Pancreatic Cancer using Global Gene Expression Technology. American Journal of Patholology 160, 1239–1249 (2002)

    Google Scholar 

  19. Li, H., Krishna, R., Murthy, K.: Significance Analysis and Improved Discovery of Differentially Co-expressed Gene Sets in Microarray Data. In: Sixth IEEE International Conference on Data Mining -Workshops, 2006. ICDM Workshops 2006, December, pp. 196–201 (2006)

    Google Scholar 

  20. Michael, W.: CoXpress: differential co-expression in gene expression data. BMC Bioinformatics 7, 509 (2006)

    Article  Google Scholar 

  21. Yinglei, L., Baolin, W., Chen, L., Zhao, H.Y.: A statistical method for identifying differential gene–gene co-expression pattern. Bioinformatics 20(17) (2004)

    Google Scholar 

  22. Kostka, D., Rainer, S.: Finding disease specific alterations in the co-expression of genes. Bioinformatics 20, Suppl. 1 (2004)

    Google Scholar 

  23. SAGE data, http://cgap.nci.nih.gov/SAGE/SAGELibraryFinder

  24. ACTG tool, www@retina.med.harvard.edu

    Google Scholar 

  25. GOTerm Finder, gotools@genomics.princeton.edu

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seeja, K.R., Alam, M.A., Jain, S.K. (2008). Identification of Co-regulated Signature Genes in Pancreas Cancer- A Data Mining Approach. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics