Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

Abstract

This paper presents an innovational unified algorithmic framework to compute the 3D Minkowski sum of polyhedral models. Our algorithm decomposes the non-convex polyhedral objects into convex pieces, generates pairwise convex Minkowski sum, and compute their union. The framework incorporates different decomposition policies for different polyhedral models that have different attributes. We also present a more efficient and exact algorithm to compute Minkowski sum of convex polyhedra, which can handle degenerate input, and produces exact results. When incorporating the resulting Minkowski sum of polyhedra, our algorithm improves the fast swept volume methods to obtain approximate the uniting of the isosurface. We compare our framework with another available method, and the result shows that our method outperforms the former method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghosh, P.: A Unified Computational Framework for Minkowski Operations. Comp. Graph 17(4), 357–378 (1993)

    Article  Google Scholar 

  2. Badlyans, D.: A Computational Approach to Fisher Information Geometry with Applications to Image Analysis. In: Proceedings of 5th International Workshop, pp. 18–33 (2005)

    Google Scholar 

  3. Yun, S.C., Byoung, C., Choi, K.: Contour-parallel Offset Machining Without Tool-Retractions. J. Computer-Aided Design 35(9), 841–849 (2003)

    Article  Google Scholar 

  4. Lozano, T.: Spatial Planning: A Configuration Space Approach. IEEE Trans. Comput. C-32, 108–120 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chazelle, B.: Convex Partitions of Polyhedra: A Lower Bound and Worst-case Optimal Algorithm. SIAM J.Comput. 13(7), 488–507 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fogel, E., Halperin, D.: On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra. In: Proceedings of 23rd Annual ACM Symposium on Computational Geometry, pp. 319–326 (2007)

    Google Scholar 

  7. Chazelle: Convex Decompositions of Polyhedra. In: ACM Symposium on Theory of Computing, pp. 70–79 (1981)

    Google Scholar 

  8. Scott, S., Tao, J., Joe, W.: Manifold Dual Contouring. J. IEEE Transctions on Visualization and Computer Graphics 13(3), 610–620 (2007)

    Article  Google Scholar 

  9. Chazelle, B., Dobkin, D., Shouraboura, N.: Strategies for Polyhedral Surface Decomposition: An Experimental Study. J. Comput. Geom. Theory Appl., 327–342 (1997)

    Google Scholar 

  10. Varadhan, G.., Manocha, D.: Accurate Minkowski Sum Approximation of Polyhedral Models. In Proc. Comput. Graph and Appl, 12th Paci_c Conf. on (PG 2004). IEEE Comput.Sci. pp. 392-401 (2005)

    Google Scholar 

  11. Chazelle, B., Palios, L.: Triangulating a Non-convex Polytope. Discrete Comput. Geom. pp. 505-526 (1990)

    Google Scholar 

  12. Ehmann, S., Lin, M.C.: Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition. Comput. Graph. Forum.Proc. of Eurographics’200 20(3), 500–510 (2001)

    Article  Google Scholar 

  13. Fogel, E., Halperin, D.: Exact and Efficient Construction of Minkowski Sums of Convex Polyhedra with Applications. Computer-Aided Design 39, 929–940 (2007)

    Article  Google Scholar 

  14. Computer Geometry Algorithm Library. (Http://www.cgal.org)

    Google Scholar 

  15. Kim, K.: Nakhoon,: Fast Extraction of Polyhedral Model Silhouettes From Moving Viewpoint on Curved Trajectory. Computers & Graphics 29, 393–402 (2005)

    Article  Google Scholar 

  16. Chiou, J., Clay, V.: An Enhanced Marching Cubes Algorithm for In-Process Geometry Modeling. Manufacturing Science and Engineering 129(3), 566–574 (2007)

    Article  Google Scholar 

  17. Sohn, B.: Topology Preserving Tetrahedral Decomposition of Trilinear Cell. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 350–357. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Library of Efficient Data Types and Algorithms. (http://www.mpi-inf.mpg.de)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, X., Xie, L., Gao, Y. (2008). Optimal Accurate Minkowski Sum Approximation of Polyhedral Models. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics