Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

  • 1291 Accesses

Abstract

An improved hybrid adaptive controller is proposed for a class of nonaffine nonlinear systems based on sliding mode control (SMC) and support vector machine (SVM) in this paper. The sliding mode controller ensures the robustness of the closed loop system while the support vector machine is used to adaptive tracking. Moreover, the Lyapunov stability theory is employed to grantee the global stability. The simulation results have shown the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, F.C., Khalil, H.K.: Adaptive Control of Nonlinear Systems Using Neural Networks. International Journal of Control 55(6), 1299–1317 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhao, T., Sui, S.L.: Adaptive Control for A Class of Non-affine Nonlinear Systems via Two-layer Neural Networks. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, vol. 1, pp. 958–962 (2006)

    Google Scholar 

  3. Polycarpou, M.M.: Stable Adaptive Neural Control Scheme for Nonlinear Systems. IEEE Transaction on Automatic Control 41(3), 447–451 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, H.-J., Chen, R.S.: Adaptive Control of Non-affine Nonlinear Systems Using Radial Basis Function Neural Network. In: Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, Taipei (2004)

    Google Scholar 

  5. Ge, S.S., Wang, C.: Direct Adaptive NN Control of A Nonlinear Systems. IEEE Transaction on Neural Networks 13(1), 214–221 (2002)

    Article  MathSciNet  Google Scholar 

  6. Karimi, B., Menhaj, M.B., Saboori, I.: Robust Adaptive Control of Nonaffine Nonlinear Systems Using Radial Basis Function Neural Networks. In: Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics (2006)

    Google Scholar 

  7. Guo, X.J., Han, Y.L., Hu, Y.A., Zhang, Y.A.: CMAC NN-based Adaptive Control of Non-affine Nonlinear Systems. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation, Hefei, vol. 5, pp. 3303–3305 (2000)

    Google Scholar 

  8. Zhang, T., Ge, S.S., Hang, C.C.: Direct Adaptive Control of Non-affine Nonlinear Systems Using Multilayer Neural Network. In: American Control Conference, Philadelphia, vol. 1, pp. 515–519 (1998)

    Google Scholar 

  9. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  10. Suykens, J.-A.K., Vandewalle, J.: Least Square Support Vector Machine Classifiers. Neural Processing Letters 9, 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  11. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  12. Goh, C.J.: Model Reference Control of Nonlinear Systems via Implicit Function Emulation. International Journal of Control 60(1), 91–115 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Wu, J., Zhang, Y. (2008). Adaptive Hybrid SMC-SVM Control for a Class of Nonaffine Nonlinear Systems. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics