Skip to main content

Noisy Road Network Matching

  • Conference paper
Geographic Information Science (GIScience 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5266))

Included in the following conference series:

Abstract

Let \(\mathcal{N}\) and \(\mathcal{M}\) be two road networks represented in vector form and covering rectangular areas R and R′, respectively, not necessarily parallel to each other, but with R′ ⊂ R. We assume that \(\mathcal{N}\) and \(\mathcal{M}\) use different coordinate systems at (possibly) different, but known scales. Let \(\mathcal{B}\) and \(\mathcal{A}\) denote sets of ”prominent” road points (e.g., intersections) associated with \(\mathcal{N}\) and \(\mathcal{M}\), respectively. The positions of road points on both sets may contain a certain amount of ”noise” due to errors and the finite precision of measurements. We propose an algorithm for determining approximate matches, in terms of the bottleneck distance, between \(\mathcal{A}\) and a subset \(\mathcal{B}'\) of \(\mathcal{B}\). We consider the characteristics of the problem in order to achieve a high degree of efficiency. At the same time, so as not to compromise the usability of the algorithm, we keep the complexity required for the data as low as possible. As the algorithm that guarantees to find a possible match is expensive due to the inherent complexity of the problem, we propose a lossless filtering algorithm that yields a collection of candidate regions that contain a subset S of \(\mathcal{B}\) such that \(\mathcal{A}\) may match a subset \(\mathcal{B}'\) of S. Then we find possible approximate matchings between \(\mathcal{A}\) and subsets of S using the matching algorithm. We have implemented the proposed algorithm and report results that show the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and symmetries of geometric objects. Discrete & Computational Geometry 3, 237–256 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  3. Chen, C., Shahabi, C., Kolahdouzan, M., Knoblock, C.A.: Automatically and Efficiently Matching Road Networks with Spatial Attributes in Unknown Geometry Systems. In: 3rd Workshop on Spatio-Temporal Database Management (STDBM 2006) (September 2006)

    Google Scholar 

  4. Chen, C.: Automatically and Accurately Conflating Road Vector Data, Street Maps and Orthoimagery. PhD Thesis (2005)

    Google Scholar 

  5. Diez, Y., Sellarès, J.A.: Efficient Colored Point Set Matching Under Noise. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 26–40. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in Bottleneck Matching and Related Problems. Algorithmica 31, 1–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data structure for multidimensional data. In: 21st ACM Symposium on Computational Geometry, pp. 296–305 (2005)

    Google Scholar 

  8. Hopcroft, J.E., Karp, R.M.: An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hunt, K.H.: Kinematic Geometry of Mechanisms, chs. 4,7. Oxford University Press, Oxford (1978)

    MATH  Google Scholar 

  10. Johnson, D.S.: A Theoretician’s Guide to the Experimental Analysis of Algorithms. In: Goldwasser, M., Johnson, D.S., McGeoch, C.C. (eds.) Proceedings of the fifth and sixth DIMACS implementation challenges. American Mathematical Society, Providence (2002)

    Google Scholar 

  11. Saalfeld, A.: Conflation: Automated Map Compilation. International Journal on Geographical Information Systems 2(3), 217–228 (1988)

    Article  Google Scholar 

  12. Walter, V., Fritsch, D.: Matching Spatial Data Sets: a Statistical Approach. International Journal of Geographical Information Science 13(5), 445–473 (1999)

    Article  Google Scholar 

  13. Van Wamelen, P.B., Li, Z., Iyengar, S.S.: A fast expected time algorithm for the 2-D point pattern matching problem. Pattern Recognition 37(8), 1699–1711 (2004)

    Article  Google Scholar 

  14. Ware, J.M., Jones, C.B.: Matching and Aligning Features in Overlayed Coverages. In: 6th ACM International Symposium on Advances in Geographic Information Systems, pp. 28–33 (1998)

    Google Scholar 

  15. U.S. Census Bureau Topologically Integrated Geographic Encoding and Referencing system, TIGER®, TIGER/Line® and TIGER®-Related Products, http://www.census.gov/geo/www/tiger/

  16. U.S. Census Bureau TIGER/Line® files, Technical documentation. 1edn. (2006), http://www.census.gov/geo/www/tiger/tiger2006fe/TGR06FE.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas J. Cova Harvey J. Miller Kate Beard Andrew U. Frank Michael F. Goodchild

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diez, Y., Lopez, M.A., Sellarès, J.A. (2008). Noisy Road Network Matching. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds) Geographic Information Science. GIScience 2008. Lecture Notes in Computer Science, vol 5266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87473-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87473-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87472-0

  • Online ISBN: 978-3-540-87473-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics