Skip to main content

Using Feature Distribution Methods in Ensemble Systems Combined by Fusion and Selection-Based Methods

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

  • 2069 Accesses

Abstract

The main prerequisite for the efficient use of ensemble systems is that the base classifiers should be diverse among themselves. One way of increasing diversity is through the use of feature distribution methods in ensemble systems. In this paper, an investigation of the use of feature distribution methods among the classifiers of ensemble systems will be performed. In this investigation, five different methods of data distribution will be used. These ensemble systems will use six existing combination methods, in which four of them are fusion-based methods and the remaining two are selection-based methods. As a result, it is aimed to detect which ensemble systems are more suitable to use feature distribution among the classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Univ. of California, Dept. of Information and Computer Science, http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Canuto, A.: Combining neural networks and fuzzy logic for applications in character recognition. PhD thesis, Univ. of Kent. (2001)

    Google Scholar 

  3. Canuto, A., Abreu, M., Oliveira, L., Xavier Junior, J., Santos, A.: Investigating the Influence of the Choice of the Ensemble Members in Accuracy and Diversity of Selection-based and Fusion-based Methods for Ensembles. Pattern Recognition Letters 28(4), 472–486 (2007)

    Article  Google Scholar 

  4. Caragea, D., Silvescu, A., Honavar, V.: Decision tree induction from distributed, heterogeneous, autonomous data sources. In: Conf. on Int. Systems Design and App. (ISDA) (2003)

    Google Scholar 

  5. Chen, P., Popovich, P.: Correlation: Parametric and Nonparametric Measures, 1st edn. Sage Publications, Thousand Oaks (2002)

    Google Scholar 

  6. Czyz, J., Sadeghi, M., Kittler, J., Vandendorpe, L.: Decision fusion for face authentication. In: Proc. First Int. Conf. on Biometric Authentication, pp. 686–693 (2004)

    Google Scholar 

  7. Gerra-Salcedo, C., Whitley, D.: Genetic approach to feature selection for ensemble creatin. In: Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, USA, pp. 236–243 (1999)

    Google Scholar 

  8. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  9. Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. Wiley, Chichester (2004)

    MATH  Google Scholar 

  10. Kuncheva, L.I., Jain, L.C.: Designing classifier fusion systems by genetic algorithms. IEEE Trans. Evol. Comput. 4(4), 327–336 (2000)

    Article  Google Scholar 

  11. Modi, P.J., Tae Kim, P.W.: Classification of Examples by multiple Agents with Private Features. In: Proc. of IEEE/ACM Int. Conf. on Intelligent Agent Technology, pp. 223–229 (2005)

    Google Scholar 

  12. Opitz, D.: Feature selection for ensembles. In: Proc. 16th Nat. Conf. on Art. Intelligence, pp. 379–384. AAAI Press, Menlo Park (1999)

    Google Scholar 

  13. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation Forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  14. Santana, L., Oliveira, D., Canuto, A., Souto, M.: A Comparative Analysis of Feature Selection Methods for Ensembles with Different Combination Methods. In: International Joint Conference on Neural Networks (IJCNN), pp. 643–648 (2007)

    Google Scholar 

  15. Santana, L., Canuto, A.: An Analysis of Data Distribution Methods in Classifier Combination Systems. In: IJCNN 2008 (accepted, 2008)

    Google Scholar 

  16. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection oInformation Fusion 6(1), 83–98 (2005)

    Google Scholar 

  17. Tsymbal, A., Puuronen, S., Patterson, D.W.: Ensemble feature selection with the simple Bayesian classification. Inf. Fusion 4, 87–100 (2003)

    Article  Google Scholar 

  18. Tumer, K., Oza, N.C.: Input decimated ensembles. Pattern Anal. Appl. 6, 65–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santana, L.E.A., Canuto, A.M.P., Xavier, J.C. (2008). Using Feature Distribution Methods in Ensemble Systems Combined by Fusion and Selection-Based Methods. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics