Skip to main content

A Computational Model of Cortico-Striato-Thalamic Circuits in Goal-Directed Behaviour

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

A connectionist model of cortico-striato-thalamic loops unifying learning and action selection is proposed. The aim in proposing the connectionist model is to develop a simple model revealing the mechanisms behind the cognitive process of goal directed behaviour rather than merely obtaining a model of neural structures. In the proposed connectionist model, the action selection is realized by a non-linear dynamical system, while learning that modifies the action selection is realized similar to actor-critic model of reinforcement learning. The task of sequence learning is solved with the proposed model to make clear how the model can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G.E., Crutcher, M.D.: Functional architecture of basal ganglia circuits:Neural substates of parallel processing. TINS 13, 266–270 (1990)

    Google Scholar 

  2. Crutcher, M.D., Alexander, G.E.: Basal ganglia-thalamacortical circuits:Parallel substrates for motor, oculomotor, prefrontal and limbic functions. Progress in Brain Research 85, 119–146 (1990)

    Google Scholar 

  3. Heimer, L.: A new anatomical frameworkfor neuropsychiatric disorders and drug abuse. Am. J. Psychiatry 160, 1726–1739 (2003)

    Article  Google Scholar 

  4. Fudge, J.L., Haber, S.N., McFarland, N.R.: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Jour. Neuroscience 20, 2369–2382 (2000)

    Google Scholar 

  5. Haber, N.S., Kim, K.S., Mailly, P., Calzavara, R.: Reward-related cortical inputs definea large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. The Jour. Neuroscience 26, 8368–8376 (2006)

    Article  Google Scholar 

  6. Ridderinkhof, K.R., van den Wildenberg, W.P.M., Segalowitz, S.J., Carter, C.S.: Neurocognitive Mechanisms of Cognitive Control: The Role of Prefrontal Cortex in Action Selection, Response Inhibition. Performance Monitoring and Reward-Based Learning, Brain and Cognition 56, 129–140 (2004)

    Google Scholar 

  7. Taylor, N.R., Taylor, J.G.: Hard-wired Models of Working Memory and Temporal Sequence Storage and Generation. Neural Networks 13, 201–224 (2000)

    Article  Google Scholar 

  8. Taylor, J.G., Taylor, N.R.: Analysis of Recurrent Cortico-Basal Ganglia-Thalamic Loops for Working Memory. Biological Cybernetics 82, 415–432 (2000)

    Article  MATH  Google Scholar 

  9. Karabacak, O., Sengor, N.S.: A Dynamical Model of a Cognitive Function: Action Selection. In: 16th IFAC World Congress, Prague (2005)

    Google Scholar 

  10. Karabacak, O., Sengor, N.S.: A computational model for the effect of dopamine on action selection during Stroop test. In: ICANN 2006, Athens (2006)

    Google Scholar 

  11. Schultz, W., Dayan, P., Montague, P.R.: A Neural Substrate of Prediction and Reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  12. Suri, R.E., Schultz, W.: Learning of Sequential Movements by Neural Network Model with Dopamine-Like Reinforcement Signal. Exp. Brain Res. 121, 350–354 (1998)

    Article  Google Scholar 

  13. Holyrod, C.B., Coles, M.G.H.: Neural basis of human error processing: reinforcement learning, dopamine, and error related negativity. Psychological Review 4, 679–709 (2002)

    Article  Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning (2nd printing), A Bradford Book. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Berns, G.S., Sejnowski, T.J.: A Model of Basal Ganglia Function Unifying Reinforcement Learning and Action Selection. In: Proc. Joint Symp. Neural Comp., California (1994)

    Google Scholar 

  16. Suri, R.E., Bargas, J., Arbib, M.A.: Modeling functions of striatal dopamine modulation in learning and planning. Neuroscience 103, 65–85 (2001)

    Article  Google Scholar 

  17. Dayan, P., Balleine, B.W.: Reward, Motivation and Reinforcement Learning. Neuron 36, 285–298 (2002)

    Article  Google Scholar 

  18. Montague, P.R., Hyman, S.E., Cohen, J.D.: Computational Roles for Dopamine in Behavioural Control. Nature 431, 760–767 (2004)

    Article  Google Scholar 

  19. Joel, D.A., Niv, Y., Ruppin, E.: Actor-Critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks 15, 535–547 (2002)

    Article  Google Scholar 

  20. Gurney, K., Prescott, T.J., Redgrave, P.: A Computational Model of Action Selection in the Basal Ganglia I: A New Functional Anatomy. Biological Cybernetics 84, 401–410 (2001)

    Article  MATH  Google Scholar 

  21. Gurney, K., Prescott, T.J., Redgrave, P.: A Computational Model of Action Selection in the Basal Ganglia II: Analysis and Simulation of Behaviour. Biological Cybernetics 84, 411–423 (2001)

    Article  MATH  Google Scholar 

  22. Haruno, M., Kawato, M.: Heterarchical reinforcement learning model for integration of multiple cortico-striatal loops:fMRI examination in stimulus-action-reward association learning. Neural Networks 19, 1242–1254 (2006)

    Article  MATH  Google Scholar 

  23. Graybiel, A.M.: Neurotransmitters and Neuromodulators in the Basal Ganglia. TINS 13, 244–254 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Şengör, N.S., Karabacak, ”., Steinmetz, U. (2008). A Computational Model of Cortico-Striato-Thalamic Circuits in Goal-Directed Behaviour. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics