Abstract
Belief revision is a key functionality for any intelligent agent being able to perceive pieces of knowledge from its environment and to give back sentences she believes to be true with a certain degree of belief. We report on a refinement of a previous, abstract ASM specification of Condor, a system modeling such an agent, to a fully operational specification implemented in AsmL. The complete AsmL implementation of various belief revision operators is presented, demonstrating how using AsmL enabled a high-level implementation that minimizes the gap between the abstract specification of the underlying concepts and the executable code in the implemented system. Based on ASM refinement and verification concepts, a full mathematical correctness proof for different belief revision operators realized in Condor@AsmL is given.
The research reported here was partially supported by the Deutsche Forschungsgemeinschaft (grants BE 1700/7-1 and KE 1413/2-1).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alchourrón, C.E., Gärdenfors, P., Makinson, P.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2), 510–530 (1985)
AsmL webpage (2007), http://research.microsoft.com/foundations/asml/
Beierle, C., Kern-Isberner, G.: Modelling conditional knowledge discovery and belief revision by Abstract State Machines. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp. 186–203. Springer, Heidelberg (2003)
Beierle, C., Kern-Isberner, G.: An ASM refinement and implementation of the Condor system using ordinal conditional functions. In: Prinz, A. (ed.) Proceedings 14th International Workshop on Abstract State Machines (ASM 2007). Agder University College, Grimstad, Norway (2007)
Beierle, C., Kern-Isberner, G., Koch, N.: A high-level implementation of a system for automated reasoning with default rules (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Proc. of the 4th International Joint Conference on Automated Reasoning (IJCAR 2008). LNCS, vol. 5195, pp. 147–153. Springer, Heidelberg (to appear, 2008)
Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic logic. In: Proceedings 3rd International Conference on Principles of Knowledge Representation and Reasoning KR 1992, pp. 673–684 (1992)
Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)
Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89, 1–29 (1997)
DeFinetti, B.: Theory of Probability, vol. 1,2. John Wiley & Sons, Chichester (1974)
Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, Part II: Revison and update. Journal of Artificial Intelligence Research 10, 117–167 (1999)
Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence 84, 57–112 (1996)
Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theoretical Computer Science 343(3), 370–412 (2005)
Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: Proceedings Second International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, San Mateo, Ca., pp. 387–394. Morgan Kaufmann, San Francisco (1991)
Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)
Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence 40(1-2), 127–164 (2004)
Koch, N.: Repräsentation und Verarbeitung konditionalen Wissens mit AsmL. Thesis, Master of Computer Science, FernUniversität in Hagen (2007) (in German)
Lang, J.: Belief update revisited. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 2517–2522 (2007)
Paris, J.B., Vencovska, A.: In defence of the maximum entropy inference process. International Journal of Approximate Reasoning 17(1), 77–103 (1997)
Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, II, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beierle, C., Kern-Isberner, G. (2008). A Verified AsmL Implementation of Belief Revision. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds) Abstract State Machines, B and Z. ABZ 2008. Lecture Notes in Computer Science, vol 5238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87603-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-87603-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87602-1
Online ISBN: 978-3-540-87603-8
eBook Packages: Computer ScienceComputer Science (R0)