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Abstract. Modeling the cognitive processes of learners is fundamental to build 
educational software that are autonomous and that can provide highly tailored 
assistance during learning [3]. For this purpose, many student models have been 
developed. However to the best of the authors’ knowledge there is no model for 
the evaluation and teaching of spatial reasoning. This paper describes how a 
knowledge representation model for modeling cognitive processes of learners is 
applied to represent the knowledge handled in a complex and demanding task, 
the manipulation of the robotic arm CanadarmII, and more specifically, how a 
training software for CanadarmII manipulations can benefit from the model to 
evaluate spatial mental representations and provide customized assistance. 

1 Introduction 

Many complex tasks involve relying on complex spatial representations. One such 
task is the manipulation of the CanadarmII arm on the international space station 
(ISS). The CanadarmII arm is a robotic arm with seven degrees of freedom 
(represented in figure 1). Handling it is a demanding duty since astronauts who 
control it have a limited view of the environment, being rendered by only three 
monitors. Each one show the view usually obtained from a single camera at a time 
among about ten cameras mounted at different locations on the ISS and on the arm. 
Guiding a robot via cameras requires several skills such as selecting cameras and 
setting views for a situation, visualizing in 3D a dynamic environment perceived in 
2D and selecting efficient sequences of manipulations. Moreover, astronauts follow 
an extensive protocol that comprises many steps, because a single mistake (for 
example, neglecting to lock the arm into position) can engender catastrophic 
consequences. To accomplish the task, astronauts need a good ability to build spatial 
representations (spatial awareness) and to visualize them in a dynamic setting 
(situational awareness).  

Our research team is working on a software program named CanadarmTutor [11] 
for training astronauts to the manipulation of CanadarmII in a manner similar as in the 
coached sessions on a lifelike simulator that astronauts attend. CanadarmTutor’s 
interface (cf. fig. 2) reproduces part of CanadarmII’s control panel. The interface’s 
buttons and scrollwheels allow the user to associate a camera to each monitor and 



adjust the zoom, pan and tilt of the selected cameras. The arm is controlled via 
keyboard keys in inverse kinematics or joint-by-joint mode. The text field at the lower 
part of the window list all the actions done so far by a learner and display the current 
state of the simulator. The menus allow setting preferences, selecting a learning 
program and requesting tutoring feed-back or demonstrations. 

 

 
Fig. 1. A 3D model of the CanadarmII arm illustrating the 7 joints. 

 
Fig. 2. The CanadarmTutor interface. 

The task of interest in this paper is moving the arm from one configuration to 
another, according to the security protocol. The aim of the work presented here is to 
describe the relevant cognitive processes of learners that interact with CanadarmTutor 
so that the integrated virtual tutor can precisely follow their reasoning and grant a 
tailored assistance. The remainder of the article is organized as follows. First, a 
literature review on spatial cognition is given. Then, the next sections describe a 
cognitive model and its extension. We then present the first results obtained from its 



application in CanadarmTutor. Finally, the last section announces further work and 
present conclusion.  

2  Spatial Cognition 

Since more than fifty years, many researchers have been interested in the mental 
representations involved in spatial reasoning. The concept of cognitive maps was 
initially proposed by Tollman [18], following the observation of rats behavior in 
mazes. He postulated that rats build and use mental maps of the environment to take 
spatial decisions. O' Keefe & Nadel [16] gathered neurological evidences for 
cognitive maps. They observed that some nerve cells of rats (called place cells) are 
activated similarly when a rat is in a same spatial location; this is observed regardless 
of what the rat is doing. These results and the results of other studies allowed O' 
Keefe & Nadel to formulate the assumption that humans not only use egocentric 
space representations (which encode the space from the person’s perspective), but 
also resort to allocentric cognitive maps (independent of any point of view). 
According to O'Keefe & Nadel [16], an egocentric representation describes a route to 
follow to go from one place to another, and it is composed of an ordered set of 
stimuli/response associations. Usually, this knowledge is gained through experience, 
but it can also be acquired directly from descriptions (for instance, from textual route 
instructions). Route navigation is very inflexible and leaves little room for deviation. 
Indeed, choosing correct directions with landmarks strongly depends on the relative 
position of a person to landmarks. Consequently, a path deviation can easily disturb 
the achievement of the whole navigation task. An incorrect encoding or recall can 
also compromise seriously the attainment of the goal. According to Tversky [20], 
egocentric representations may be sufficient to travel through an environment, but 
they are inadequate to perform complex reasoning. For reasoning that requires 
inference, humans build cognitive maps that do not preserve measurements but keep 
the main relationships between elements. These representations do not encode any 
perspective but makes it possible to adopt several perspectives. Cognitive maps are 
also prone to encoding or recall errors. But it is generally easier to recover from an 
error, when relying on cognitive maps than on an egocentric representation. Recently, 
place cells have also been discovered in the human hippocampus [6]. In the light of 
this result and other researches carried out during the last decades in neuroscience, 
experimental psychology and other disciplines, there is no doubt that humans use 
allocentric and egocentric space representations [14].  

Cognitive models of spatial cognition have been proposed. However, they are 
usually specialized in some particular phenomena of spatial cognition such as visual 
perception and motion recognition [5], navigation in 3D environments [10, 13] and 
mental imagery and inference from spatial descriptions [4]. Models that attempt to 
give a more general explanation of spatial cognition have no computational 
implementation (for example, [7]). Moreover, to the best of the authors’ knowledge 
there is no model for the evaluation and teaching of spatial reasoning and spatial 
representations. 



Cognitive models of spatial cognition can generally be viewed as proposing 
structures for modelling cognitive processes at either a symbolic level or at a neural 
level (for example [13]). Symbolic models that rely on allocentric representations [4, 
5, 8] usually represent –with some particularities– spatial relationships as relations of 
type “a r b” where “r” is a spatial relationship such as “is at the left of” or “is on top 
of” and where “a” and “b” are mental representations of objects. Unlike allocentric 
representations, egocentric representations are typically represented as sets of 
relationships between the self and objects. This representation is in accordance with 
researchers in psychology such as Tversky [20] that suggest that cognitive maps are 
encoded as sets of spatial relationships in semantic memory. Since cognitive maps are 
key to complex spatial reasoning, tutoring software that diagnose and teach complex 
spatial reasoning requires the capacity to evaluate semantic knowledge. 

3  The Theoretical Model 

Our model for describing cognitive processes in tutoring systems [7] is inspired by 
the ACT-R [1] and Miace [12] cognitive theories, which attempt to model the human 
process of knowledge acquisition. It is a symbolic model that organizes knowledge as 
(1) semantic knowledge [15], (2) procedural knowledge [1] and (3) episodic 
knowledge [19]. This paper does not explain the episodic memory part of our model 
since it is not central to the discussion, here.  

The semantic memory contains descriptive knowledge. Our model regards 
semantic knowledge as concepts taken in the broad sense. According to recent 
researches [9], humans consider up to four concept instances simultaneously (four 
dimensions) in the achievement of a task. However, the human cognitive architecture 
is able to group several of them to handle them as one, in the form of a vector of 
concepts [9]. We call described concepts these syntactically decomposable concepts, 
in contrast with primitive concepts that are syntactically indecomposable. For 
example, whereas the expression “PMA03 isConnectedToTheBottomOf Lab02” is a 
decomposable representation, the symbol “PMA03”, “isConnectedToTheBottomOf” 
and “Lab02” are undividable representations. The concept “PMA03 
isConnectedToTheBottomOf Lab02” represents the knowledge that the “PMA03” ISS 
module is connected at the bottom of the “Lab02” ISS module on the ISS (assuming 
the ISSACS coordinate system). In this way, the semantic of a described concept is 
given by the semantics of its components. While concepts are stored in the semantic 
memory, concept instances occur in working memory, and are characterized by their 
mental and temporal context [12]. Thus, each occurrence of a symbol such as 
“Lab02” is treated as a distinct instance of the same concept.  

The procedural memory encodes the knowledge of how to attain goals 
automatically by manipulating semantic knowledge. It is composed of procedures 
which fires one at a time according to the current state of the cognitive architecture 
[1]. Contrary to semantic knowledge, the activation of a procedure does not require 
attention. For example, when someone evaluate automatically “PMA03 
isConnectedToTheBottomOf Lab02” to obtain the value “true”, the person does not 
recall the knowledge explicitly. It is a procedure acquired following the repeated 



recall of the “PMA03 isConnectedToTheBottomOf Lab02” semantic knowledge from 
memory. As Mayers et al., [12], we differentiate primitive procedures and complex 
procedures. Whereas primitive procedures are seen as atomic actions, the activation of 
a complex procedure instantiates a set of goals, to be achieved either by a complex 
procedure or a primitive procedure. We consider goals as a special type of semantic 
knowledge. Goals are intentions that humans have, such as the goal to solve a 
mathematical equation, to draw a triangle or to add two numbers [12]. At every 
moment, the cognitive architecture has one goal, a semantic knowledge that 
represents an intention. Our model is based on the proposal of many researchers that 
goals obey the same constraints as semantic knowledge. i.e. they are competing to 
become the activated goal, they can be forgotten and their activation vary according 
to the context [2]. In our model, this assumption means that cognitive steps may not 
always need to be achieved in a sequential order. Goals are realized by means of 
procedural knowledge execution. There can be many correct and incorrect ways 
(procedures) to achieve a goal. Our model represents goals as a special type of 
described concepts. A goal has zero or more components, which are concept 
instances. These instances are the object of the goal. For example, the concept 
instance “Cupola01” could be component of an instance of the goal 
“GoalSelectCamerasForViewingModule”, which represents the intention to select the 
best camera for viewing the “Cupola01” ISS module. The components of a goal are 
determined by the complex procedure that instantiated the goal. 

4  The Computational Model 

Our model describes knowledge entities (concepts, procedures and goals) 
according to sets of slots. A slot associates values to knowledge entities. Each value 
can be a pointer to another knowledge entity, or arbitrary data such as character 
strings or integers.  

Concepts are encoded according to seven slots. The “Identifier” slot is a character 
string used as a unique reference to the concept. The “Metadata” slot provides general 
metadata about the concept (for example, authors’ names and a textual description). 
The “DLReference” slot describes the concept with a logical formalism. This logical 
description allow inferring logical relationships between concepts such as “is-a” 
relationships. These relationships between concepts should be seen as a feature to 
facilitate the task of knowledge authors, by allowing them to define goals, procedures 
and described concepts that can be applied to concepts that satisfy a concept’s logical 
description. This originality of our model is described in details in [7].  The “Goals” 
slot contains a goals prototypes list; it provides information about goals that students 
could have and which use the concept. “Constructors” specifies the identifier of 
procedures that can create an instance of this concept. “Components” is only 
significant for described concepts. It indicates, for each concept component, its 
concept type. Finally, “Teaching” points to some didactic resources that generic 
teaching strategies of a tutoring system can employ to teach the concept.  

Goals have six slots. "Skill" specifies as a string the necessary skill to accomplish 
the goal, “Identifier” is a unique name for the goal, “Metadata” describes the goal 



metadata, "Parameters" indicates the types of the goal parameters, "Procedures" 
contains a set of procedures that can be used to achieve the goal, and “Didactic-
Strategies" suggests strategies to teach how to achieve that goal.  

Ten slots describe procedures. The “Metadata” and “Identifier” slots are the same 
as for concepts/goals. “Goal” indicates the goal for which the procedure was defined. 
“Parameters” specifies the concepts type of the arguments. For primitive procedures, 
“Method” points to a Java method that executes an atomic action. For complex 
procedures, “Script” indicates a set of goals to be achieved. “Validity” is a pair of 
Boolean values. Whereas the first indicates if the procedure is valid and so it always 
gives the expected result, the second indicates if it always terminate. “Diagnosis-
Solution” contains a list of pairs “[diagnosis, strategy]” that indicate for each 
diagnosis, the suitable teaching strategy to be adopted. Finally, “Didactic-Resources” 
points to additional resources (examples, exercises, etc.) to teach the procedure.  
A graphical tool has been built to ease knowledge authoring. 

The model was used to represent the cognitive processes of learners that utilize a 
Boolean reduction rules tutoring system [7]. Although the model was successfully 
employed to offer tailored assistance, the model lays the emphasis on procedural 
knowledge learning and offers less support for semantic knowledge learning. The 
reason is that there is no structure for modeling the retrieval of knowledge from 
semantic memory, a key feature of many cognitive theories. As a consequence, it is 
impossible to specify, for instance, that to achieve a goal, one must be able to recall 
correctly the described concept “CameraCP5 AttachedTo S1” (the camera CP5 is 
attached to the ISS module named S1) to use it in a procedure thereafter. Evaluating 
semantic general knowledge is essential for diagnosing and teaching spatial 
reasoning, if we take the view that cognitive maps are encoded as semantic 
knowledge. 

6  The Extended Model 

To address this issue we extended our model. The extension adds a - pedagogical –
distinction between “general” and "contextual” semantic knowledge. We define 
general knowledge as the semantic knowledge (memorized or acquired through 
experience) that is true in all situations of a curriculum. For instance, such knowledge 
is that the approximate length of the end effector of CanadarmII is one meter. To be 
used properly, general knowledge must (1) be properly acquired beforehand, (2) be 
recalled correctly and (3) be handled by valid procedures. A general knowledge is a 
described concept, because to be useful it must represent a relation.  

Contextual knowledge is the opposite of general knowledge. It is the knowledge 
obtained from the interpretation of a situation. It is composed of concepts instances. 
For example, the information that the rotation value of the joint “WY” of CanadarmII 
arm is currently 42° is a contextual knowledge obtained by reading the display. 
Authors do not need to define contextual knowledge, since it is dynamically 
instantiated by the execution of procedures that represent each learner’s cognitive 
activity. We added three slots to described concepts. The “General” slot indicates 
whether the concept is general or not. The “Valid” slot specifies the validity of the 



concept (true or false), and optionally the identifier of an equivalent valid concept. In 
addition, the “RetrievalComponents” slot specifies a set of concepts to be instantiated 
to create the concept components when the concept is instantiated. Table 1 presents a 
concept encoding the knowledge that the spatial module “MPLM” is connected below 
the module “NODE2” on the ISS (according to the ISSACS coordinate system). The 
“Valid” slot indicates that it is an erroneous knowledge and that the valid equivalent 
knowledge is the concept “MPLM_TopOf_Node2” (cf. table 2). The “DLReference” 
slot content that is not presented in these tables allow the system to infer that these 
two concepts are subconcepts of the “SpatialRelationshipBetweenModules" concept 
that is the concept of spatial relationship between two ISS modules. 

Table 1. Partial definition of the concept “MPLM_Below_MPLM2“ concept. 

SLOT VALUE
Identifier MPLM_Below_Node2 

Metadata Author: Philippe Fournier-Viger, Date : 2007 

DLReference … 

Type GoalRecallCameraForGlobalView 

Components Module, Module 

RetrievalComponents MPLM, Node2 

General True 

Valid False  

 
We added a retrieval mechanism to connect procedures to the general knowledge 

in order to model the recall process. It works as the retrieval mechanism of ACT-R, 
one of the most acknowledged unified theory of cognition. We choosed ACT-R, 
because our model is already based on that theory. A slot named “Retrieval-request” 
is added to procedures, to express a retrieval request for a concept in semantic 
memory, by means of patterns. A pattern specifies the identifier of a concept to be 
retrieved and zero or more restrictions on the value of its components. Table 3 shows 
the procedure “ProcedureRecallCameraForGlobalView”. The execution of this 
procedure will request the knowledge of the camera on the ISS that give the best 
global view of a location taken as parameter by the procedure. The “Retrieval-
request” slot states that a concept of type “ConceptRelationshipCameraGlobalView” 
(a relation that state that a camera gives a global view of a place) or one of its 
subconcepts  is needed, and that its first component should be a place whose concept 
type match the type of the procedure parameter, and the second component need to be 
of type “ConceptCamera” (a camera). A correct recall following the execution of this 
procedure will result in the creation of an instance of 
“ConceptRelationshipCameraGlobalView” that will be deposited in a temporary 
buffer with a capacity of one concept instance and made available to the next 
procedures to be executed.  



We have modelled the knowledge for the task of moving a load from one position 
to another with CanadarmII. To achieve this, we discretized the 3D space into 3D sub 
spaces named elementary spaces (ES). The spatial knowledge is encoded as described 
concepts that stand for relations as (1) a camera can see an ES or an ISS module, (2) 
an ES comprise an ISS module, (3) an ES is next to another ES, (4) an ISS module is 
at the side of another ISS module or (5) a camera is attached to an ISS module. 
Moving the arm from one position to another is modelled as a loop where the learner 
must recall a set of cameras for viewing the ESs containing the arm, select the 
cameras, adjust their parameters (zoom, pan, tilt), retrieves a sequence of ESs to go 
from the current ES to the goal, and then move to the next ES. CanadarmTutor detects 
all the actions like camera changes and entering/leaving an ES. Each of these actions 
is then considered as a primitive procedure execution. The model does not go into 
finer details like how to choose the right joint to move to go from an ES to another. 
This will be part of future improvements.  

Table 2. Partial definition of the concept “MPLM_TopOf_NODE2 “ concept. 

SLOT VALUE 
Identifier MPLM_TopOf_Node2 

Metadata Author: Philippe Fournier-Viger, Date : 2007 

DLReference … 

Components Module, Module 

RetrievalComponents MPLM, Node2 

General True 

Valid True  

Table 3. Partial definition of the procedure “RecallCameraForGlobalView“. 

SLOT VALUE 
Identifier RGlobalView 

Metadata Author: Philippe Fournier-Viger, Date : 2007 

Goal GoalRecallCameraForGlobalView 

Parameters (ConceptPlace: p) 

Retrieval-request ID: ConceptRelationshipCameraGlobalView  
A1: ConceptPlace: p   A2: ConceptCamera 

7  Evaluating the Knowledge 

The model provides mechanisms for evaluating semantic and procedural 
knowledge. Evaluating procedural knowledge is achieved by comparing a learner’s 



actions to the task description. We consider two types of procedural errors: (1) the 
learner makes a mistake or (2) doesn’t react within a time limit. In the first case, we 
consider an error as the result of the learner applying an incorrect procedure for its 
current goal. For instance, a learner could forget to adjust a camera zoom/pan/tilt 
before moving the arm. In the second case, we consider that the learner either doesn’t 
know any correct procedure for the present goal or doesn’t recognize their 
preconditions. Because our model links goals to procedures that can accomplish them, 
the tutor has knowledge of all the correct ways to achieve the current goal in both of 
these situations. For complex procedures that specify sub-goals, the tutor can easily 
conceive an ordered sequence of valid procedures that allows accomplishing correctly 
any goal.  

 

 
Fig. 3. A camera identification exercise. 

In addition to this procedural knowledge evaluation mechanism, the extension of 
this model provides two ways for evaluating general semantic knowledge. Whereas 
primitive procedures are detectable, it is only possible to detect the recall of 
knowledge from semantic memory indirectly. First, the tutoring system can test 
general knowledge directly with questions. For example, CanadarmTutor may verify 
the mastery of the described concept “CameraCP9 GivesGlobalViewOf JEM” by 
showing the learner a view of the JEM module and asking him to identify which 
camera was used (cf. fig. 3). Other types of questions are also implemented such as to 
ask to name the closest modules to a given module, or to ask to select the best 
cameras for viewing one or more modules. Second, general knowledge can be 
evaluated through problem-solving exercises. Initially, the system assumes that recalls 
are done correctly. Then, as the training progresses, a better evaluation is achieved. 



The result of each procedure makes it possible to infer through backward reasoning if 
a general knowledge was recalled (the result of the procedure allow deducing the 
retrieval buffer content). If the learner uses procedures to retrieve a valid knowledge 
several times, the system increases its confidence that the learner can recall that 
knowledge. In the case of the likely recall of an erroneous knowledge, the system 
heightens the probability of a recall error with that knowledge and will decrease its 
confidence that the learner masters the valid concept(s).  

After many exercises and/or questions, the system acquires a detailed knowledge 
of the strengths and weaknesses of a learner regarding the procedural and semantic 
knowledge. It uses this information to generate exercises, questions and 
demonstrations tailored to the learner that will involve the knowledge to be trained 
for. For instance, if the system infers that a learner possesses the erroneous knowledge 
that camera “CP10” is a good camera to view the JEM module, it will likely generate 
direct questions about the corresponding valid knowledge or exercises that involve its 
recall.  

The integrated pedagogical module currently takes pedagogical decisions based on 
some very simple rules. To teach general knowledge or procedures, the tutor extracts 
the didactic knowledge –consisting mostly of text hints or explanations –encoded in 
concepts’ or procedures’ didactic slots. The tutor also utilizes the spatial relations 
encoded in the general described concepts to generate dynamic questions. Figure 4 
shows such a question that was presented to a learner to test his knowledge of the 
location of the S1P1TrussRight module. The virtual tutor randomly picked three 
erroneous question choices based on the spatial relationships. It selected one module 
that look similar to S1P1TrussRight (S1P1TrussLeft) and two modules that are close 
to S1P1TrussRight (PVARight01 and S34P34TrussRight01) based on the spatial 
relationships “lookSimilarTo” and “isConnectedTo”. 

 

 
Fig. 4. A contextual question generated by the virtual tutor. 

Evaluating semantic knowledge through problem-solving exercise is an interesting 
alternative to the automatic techniques that require doing it separately from the 
evaluation of procedural knowledge. For instance, Taricani & Clariana [17] offer an 
automatic algorithm for the scoring of concepts maps drawn by learners. A concept 



maps is basically a graph where each node is a concept or concept instance and each 
link represents a relationship. The main information contained in a concept map can 
be encoded as general knowledge within our framework and be evaluated according 
to the process described above.  

8  Conclusion and further work 

We have presented an original extension of our model for describing domain 
knowledge in virtual learning environments. The extension offers a solution for 
evaluating and teaching general semantic knowledge that learners should possesses. 
Because the model connects semantic knowledge retrieval to procedural knowledge, 
evaluation of the general semantic knowledge can be achieved directly through 
questions or indirectly through observation of problem-solving tasks.  

Moreover, virtual tutors based on our model should be able to generate better feed-
back, because they can know how the semantic knowledge recalled is connected to 
procedures. Furthermore, this paper has showed how this extension can be used to 
support spatial reasoning. A first work on modeling the knowledge handled in 
CanadarmTutor has been presented. Conceiving a more elaborate version of the tutor 
and verifying its effectiveness is part of our ongoing research. 
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