Skip to main content

The Game of Synchronized Domineering

  • Conference paper
Computers and Games (CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5131))

Included in the following conference series:

  • 2210 Accesses

Abstract

In synchronized games players make their moves simultaneously rather than alternately. Synchronized Domineering is the synchronized version of Domineering, a classic two-player combinatorial game. We present the solutions for all the m ×n boards with m ≤ 6 and n ≤ 6. Also, we give results for the n ×3 boards, n ×5 boards, and some partial results for the n ×2 boards. Future research is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berlekamp, E.R.: Blockbusting and Domineering. Journal of Combinatorial Theory Series A 49(1), 67–116 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  3. Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Solving 8×8 Domineering. Theoretical Computer Science 230(1-2), 195–206 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bullock, N.: Domineering: Solving Large Combinatorial Search Spaces. ICGA Journal 25(2), 67–84 (2002)

    MathSciNet  Google Scholar 

  5. Cincotti, A., Iida, H.: The Game of Synchronized Cutcake. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, pp. 374–379 (2007)

    Google Scholar 

  6. Cincotti, A., Iida, H.: The Game of Synchronized Maundy Cake. In: Proceedings of the 7th Annual Hawaii International Conference on Statistics, Mathematics and Related Fields, pp. 422–429 (2008)

    Google Scholar 

  7. Conway, J.H.: On Numbers and Games. Academic Press, San Diego (1976)

    MATH  Google Scholar 

  8. Gardner, M.: Mathematical games. Scientific American 230(2), 106–108 (1974)

    Google Scholar 

  9. Lachmann, M., Moore, C., Rapaport, I.: Who Wins Domineering on Rectangular Boards. In: Nowakowski, R.J. (ed.) More Games of No Chance, vol. 42, pp. 307–315. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Jaap van den Herik Xinhe Xu Zongmin Ma Mark H. M. Winands

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cincotti, A., Iida, H. (2008). The Game of Synchronized Domineering. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds) Computers and Games. CG 2008. Lecture Notes in Computer Science, vol 5131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87608-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87608-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87607-6

  • Online ISBN: 978-3-540-87608-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics