Skip to main content

An Approach to Flocking of Robots Using Minimal Local Sensing and Common Orientation

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

  • 1649 Accesses

Abstract

A new algorithm for the control of robot flocking is presented. Flocks of mobile robots are created by the use of local control rules in a fully distributed way, using just local information from simple infra-red sensors and global heading information on each robot. Experiments were done to test the algorithm, yielding results in which robots behaved as expected, moving at a reasonable velocity and in a cohesive way. Up to seven robots were used in real experiments and up to fifty in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hayes, A.T., Martinoli, A., Goodman, R.M.: Distributed Odor Source Localization. IEEE Sensors Journal 2(3), 260–271 (2002)

    Article  Google Scholar 

  2. Pugh, J., Martinoli, A.: Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization. In: IEEE Swarm Intelligence Symposium, Piscataway, NJ, pp. 332–339. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  3. Howard, A.: Multi-robot mapping using manifold representations. In: IEEE International Conference on Robotics and Automation, Piscataway, NJ, vol. 4, pp. 4198–4203. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  4. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  5. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents, part i: fixed topology. In: Proceedings. 42nd IEEE Conference on Decision and Control, Piscataway, NJ, vol. 2, pp. 2010–2015. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  6. Canepa, D., Potop-Butucaru, M.G.: Stabilizing Flocking Via Leader Election in Robot Networks. In: Stabilization, Safety, and Security of Distributed Systems, pp. 52–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Hayes, A.T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots. In: IEEE International Conference on Robotics Automation, Piscataway, NJ, pp. 3900–3905. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  8. Fredslund, J., Mataric, M.J.: A general algorithm for robot formations using local sensing and minimal communication. IEEE Transactions on Robotics and Automation, Special Issue on Multi Robot Systems 18, 837–846 (2002)

    Article  Google Scholar 

  9. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: IEEE International Conference on Robotics and Automation, Piscataway, NJ, vol. 1, pp. 73–80. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  10. Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Sahin, E., Spears, W. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)

    Google Scholar 

  11. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)

    Google Scholar 

  12. Hsu, H., Liu, A.: Multiagent-based multi-team formation control for mobile robots. Journal of Intelligent and Robotic Systems 42, 337–360 (2005)

    Article  Google Scholar 

  13. Correll, N., Sempo, G., de Lopez, M.Y., Halloy, J., Deneubourg, J.-L., Martinoli, A.: SwisTrack: A Tracking Tool for Multi-UnitRobotic and Biological Systems. In: IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS), Piscataway, NJ, pp. 2185–2191. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  14. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. J.-Info.-Proc.-Lett. 1(4), 132–133 (1972)

    Article  MATH  Google Scholar 

  15. Viscido, S.V., Parrish, J.K., Grunbaum, D.: The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecological Modelling 183, 347–363 (2005)

    Article  Google Scholar 

  16. Pugh, J., Martinoli, A.: Relative Localization and Communication Module for Small-Scale Multi-Robot Systems. In: IEEE International Conference on Robotics and Automation, Piscataway, NJ, pp. 188–193. IEEE Press, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Navarro, I., Gutiérrez, Á., Matía, F., Monasterio-Huelin, F. (2008). An Approach to Flocking of Robots Using Minimal Local Sensing and Common Orientation. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics