Skip to main content

Preference-Based Uncertain Data Integration

  • Conference paper
Knowledge Engineering: Practice and Patterns (EKAW 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5268))

Abstract

In this paper we present a novel uncertainty-enabled approach to data integration. Uncertainty is a natural by-product of many automatic data integration processes. In our approach we keep it up to the integrated database, and use it to improve query answering. Our method is based on the concept of preference: we show how preferences can be interpreted and manipulated to produce a global uncertain data source, and discuss the complexity of ranking query results on the integrated database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Magnani, M., Montesi, D.: Uncertainty in data integration: current approaches and open problems. In: VLDB Workshop on Management of Uncertain Data (2007)

    Google Scholar 

  2. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 687–698. ACM, New York (2007)

    Google Scholar 

  3. Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based on uncertain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data integration. In: ICDE (2005)

    Google Scholar 

  5. Nottelmann, H., Straccia, U.: splmap: A probabilistic approach to schema matching. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 81–95. Springer, Heidelberg (2005)

    Google Scholar 

  6. Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic schema matching. Inf. Process. Manage. 43(3), 552–576 (2007)

    Article  Google Scholar 

  7. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A bayesian network approach to ontology mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Wang, Y., Liu, W., Bell, D.A.: Combining uncertain outputs from multiple ontology matchers. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 201–214. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Nagy, M., Vargas-Vera, M., Motta, E.: Dssim - managing uncertainty on the semantic web. In: International Workshop on Ontology Mapping (2007)

    Google Scholar 

  10. Marie, A., Gal, A.: Managing uncertainty in schema matcher ensembles. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 60–73. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Hunter, A., Liu, W.: Fusion rules for merging uncertain information. Information Fusion 7(1) (2006)

    Google Scholar 

  12. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and evaluating automatic semantic reconciliation. VLDB Journal 14(1), 50–67 (2005)

    Article  Google Scholar 

  13. Gal, A.: Managing uncertainty in schema matching with top-k schema mappings. Journal on Data Semantics VI, 90–114 (2006)

    Google Scholar 

  14. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions. Information Fusion 7(1), 135–150 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aldo Gangemi Jérôme Euzenat

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magnani, M., Montesi, D. (2008). Preference-Based Uncertain Data Integration. In: Gangemi, A., Euzenat, J. (eds) Knowledge Engineering: Practice and Patterns. EKAW 2008. Lecture Notes in Computer Science(), vol 5268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87696-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87696-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87695-3

  • Online ISBN: 978-3-540-87696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics