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Abstract. It is now widely believed that FlexRay communication protocol will 
become the de-facto standard for distributed safety-critical automotive systems. 
In this paper, the fault sensitivity of the FlexRay communication controller reg-
isters are investigated using transient single bit-flip fault injection. To do this, a 
FlexRay bus network, composed of four nodes, was modeled. A total of 
135,600 transient single bit-flip faults were injected to all 408 accessible single-
bit and multiple-bit registers of the communication controller in one node. The 
results showed that among all 408 accessible registers, 30 registers were imme-
diately affected by the injected faults. The results also showed that 26.2% of in-
jected faults caused at least one error. Based on the fault injection results, the 
TMR and the Hamming code techniques were applied to the most sensitive 
parts of the FlexRay protocol. These techniques reduced the fault affection to 
the registers from 26.2% to 10.3% with only 13% hardware overhead. 

Keywords: Safety-critical applications, Distributed embedded systems, Flex-
Ray protocol, Fault injection. 

1   Introduction 

Today, many safety-critical applications are implemented as distributed embedded 
systems [13], e.g. X-by-wire applications. These systems are composed of several 
different types of hardware units (called nodes), e.g., processing units, sensors, and 
actuators, interconnected by a communication network.  

Communication in a distributed architecture can be triggered either dynamically, in 
response to an event (event-driven), or statically, at predetermined moments in time 
(time-driven). Examples of event-triggered protocols are Byteflight [1], CAN [2], 
LonWorks [3], and Profibus [4]. The main drawback of event-triggered protocols is 
their lack of predictability [5]. Examples of time-triggered protocols are SAFEbus [6], 
SPIDER [7], and TTP/C [8]. The main drawback of time-triggered protocols is their 
lack of flexibility [5]. To resolve the drawbacks of both event-triggered and time-
triggered protocols, other protocols such as TTCAN [9], FTT-CAN [10], and Flex 
Ray [11] are introduced that can support both time-triggered and event-triggered  
transmissions. 

Among the latter protocols, the FlexRay protocol is advancing as the predominant 
protocol and will become the de-facto industry standard for X-by-wire applications 
[12], [13], [5], [14], [15]; e.g., the next edition of the BMW X5 will use the FlexRay 
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protocol in its electronically controlled dampers [12].The FlexRay protocol was 
started by an industry consortium with four founding members (BMW, Daimler-
Chrysler, Philips, and Freescale) [15]. Three top design objectives were considered in 
the standardization of the FlexRay protocol: high speed transmission, deterministic 
communication, and fault-tolerant communication [15].  

In safety-critical distributed embedded systems, a fault-tolerant communication be-
tween different nodes has a significant impact on the overall system reliability. It has 
been reported [16], [13] that the overall reliability of a safety-critical distributed em-
bedded system not only depends on the reliability of the nodes, but also on the reli-
ability of the communication network. 

This paper investigates the fault sensitivity of all parts of the FlexRay communication 
controller using fault injection. The most and the least sensitive registers in the FlexRay 
are characterized. Then, appropriate fault-tolerant techniques are applied to the most 
sensitive registers, to protect the communication controller against transient faults. 

The remainder of the paper is organized as follows: Section 2 introduces the 
FlexRay protocol briefly. Error models and error handling mechanisms in the 
FlexRay protocol are presented in Section 3.  In Section 4, the experimental environ-
ment is presented. Section 5 includes the experimental results and finally, the conclu-
sions are given in Section 6. 

2   The FlexRay Protocol 

The FlexRay protocol provides key features of synchronization that include scalable 
data transmission in both synchronous and asynchronous modes. It can support the 
data rate up to 10Mbit/sec. The protocol itself offers deterministic data transmission, 
guaranteed message latency and message jitter. The FlexRay supports dual and re-
dundant transmission channels and transmission mechanism is arbitration free. In ad-
dition, it has optional support of optical or electrical physical layers. The physical 
layer will provide support for bus, star, and multiple star topologies [11]. 

From the dependability point of view, the FlexRay documents [11] specify solely 
bus guardian mechanism and clock synchronization algorithms. Other features, such 
as a membership service or mode management facilities, should be implemented in 
software or hardware layers on top of the FlexRay. This will allow to conceive and to 
implement exactly the services that are needed with the drawback that correct and 
efficient implementations might be more difficult to achieve in a layer above the 
communication controller [16]. 

One of the main purposes of this paper is to convince developers of the FlexRay 
communication controller, by the experimental results, how necessary it is to reduce 
the fault sensitivity of critical registers. This reduction causes to improve the reliabil-
ity of the FlexRay protocol, noticeably; and it is possible to reduce the need for  
expensive fault-tolerant techniques, such as bus guardian mechanism or clock syn-
chronization algorithms. 

2.1   Protocol Operation 

Communications in the FlexRay protocol are based on predetermined interval times 
which are named communication cycles (bus cycles). These communication cycles are 
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executed periodically. In this protocol a communication cycle is a concatenation of a 
time-triggered (or static) window, an event-triggered (or dynamic) window, a symbol 
window and a network idle time (NIT) window. The size of each communication win-
dow is set statically at design time. The time-triggered window uses a Time Division 
Multiple Access (TDMA) [17] mechanism; a node in FlexRay might possess several 
slots in the time-triggered window, but the size of all the slots is identical. In the event-
triggered part of the communication cycle, the mechanism is Flexible TDMA (FTDMA) 
[18]: time is divided into so-called minislots, each station possesses a given number of 
minislots (not necessarily consecutive), and it can start the transmission of a frame inside 
each of its own minislots. A minislot remains idle, if the station has nothing to transmit 
which actually induces a loss of bandwidth [16]. The symbol window is a communica-
tion period in which a symbol can be transmitted on the network. The NIT window is a 
communication-free period that concludes each communication cycle. Fig. 1 shows an 
example of communication cycle in the FlexRay protocol. 

Fig. 1. Communication Cycle in the FlexRay Protocol 

The FlexRay frame consists of three parts: the header segment, the payload seg-
ment, and the trailer segment. The FlexRay header segment consists of 5 bytes. These 
bytes contain one reserved bit, payload preamble indicator, null frame indicator, sync 
frame indicator, startup frame indicator, frame ID, payload length, header CRC, and 
cycle count.  

The payload segment contains 0 to 254 bytes (0 to 127 two-byte words) of data. 
Because the payload length contains the number of two-byte words, the payload seg-
ment contains an even number of bytes. The FlexRay trailer segment contains a single 
field, a 24-bit CRC for the frame. The Frame CRC field contains a cyclic redundancy 
check code (CRC) computed over the header segment and the payload segment of the 
frame. The computation includes all fields in these segments.  

In the FlexRay protocol, frames are sent in static slots or dynamic slots of each 
communication cycle. Fig. 2 shows the frame format in the FlexRay protocol. 

 

Fig. 2. Frame format in the FlexRay Protocol 
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Fig. 3. The FlexRay Structure [11] 

 

2.2   Protocol Structure 

The FlexRay communication controller consists of six modules [11]: controller host 
interface (CHI), protocol operation control (POC), coding and decoding (CODEC), 
media access control (MAC), frame and symbol processing (FSP), and clock syn-
chronization process (CSP). Fig. 3 shows relation between these modules. 

The CHI module, manages data and control flow between the host processor and 
the FlexRay protocol engine within each node. The CHI module manages all data 
exchange relevant to the protocol operation and manages all data exchanges relevant 
to the exchange of messages. Moreover, this module manages protocol configuration 
data, protocol control data, and protocol status data. 

Operational modes of FlexRay modules are adjusted by POC module. Proper proto-
col behavior can only occur if the mode changes of the core modules are properly coor-
dinated and synchronized. The purpose of the POC is to react to host commands and 
protocol conditions by triggering coherent changes to core modules in a synchronous 
manner, and to provide the host with the appropriate status regarding these changes. 

The CODEC module is responsible for en-
coding the communication elements into a bit 
stream and is responsible for receiving com-
munication elements, making bit streams and 
investigating correctness of bit streams.  

The MAC module controls access to the 
bus. In the FlexRay protocol, media access 
control is based on a recurring communica-
tion cycle. Within one communication cycle, 
the FlexRay offers the choice of two media 
access schemes, i.e., TDMA scheme and 
FTDMA scheme. The communication cycle 
is the fundamental element of the media ac-
cess scheme within FlexRay. 

The FSP module checks the correct timing 
of received frames and received symbols with 
respect to the TDMA scheme, applies further 
syntactical tests to received frames, and checks 
the semantic correctness of received frames. 

Finally, the CSP module is responsible for 
generation of timing units in the FlexRay 
communication controller, e.g., communication 
cycles. Moreover this module uses a distributed clock synchronization mechanism in 
which each node individually synchronizes itself to its cluster by observing the timing of 
transmitted sync frames from other nodes. 

3   Error Models and Error Handling Mechanisms in the FlexRay 
Protocol 

Safety-critical applications have to function correctly even in presence of faults. 
Faults can be permanent (e.g., damaged microcontrollers or communication links), 
transient (e.g., caused by single event upsets or electromagnetic interferences), or  
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intermittent (appear and disappear repeatedly). The transient faults are the most  
common, and their number is continuously increasing due to the continuously raising 
level of integration in semiconductors [19]. These transient single bit-flip errors are 
more common consequences of transient faults [22].  

3.1   Error Models in the FlexRay Protocol 

According to the FlexRay protocol, the following three categories of errors are possi-
ble [11]: 

 

1) Syntax error 
Syntax error denotes the presence of a syntactic error in a time slot, and occurs in fol-
lowing conditions: 

- The node starts transmitting while the channel is not in the idle state. 
- A decoding error occurs. 
- A frame is decoded in the symbol window or in the network idle time. 
- A symbol is decoded in the static segment, the dynamic segment, or the net-

work idle time. 
- A frame is received within the slot after the reception of a semantically cor-

rect frame. 
- Two or more symbols are received within the symbol window. 

 

2) Content error 
Content error denotes the presence of an error in a received frame, and occurs in fol-
lowing condition: 

- In the static segment, the header length the header of the received frame does 
not match the stored header length in a special register (this register contains 
globally configured value of the payload length of a static frame). 

- In the static segment, the startup frame indicator, contained in the header of 
the received frame, is set to one while the sync frame indicator is set to zero. 

- In the static or in the dynamic segment, the frame ID, contained in the header 
of the received frame, does not match the current value of the slot counter or 
the frame ID equals to zero in the dynamic segment. 

- In the static or dynamic segment, the cycle count, contained in the header of 
the received frame, does not match the current value of the cycle counter. 

- In the dynamic segment the sync frame indicator, contained in the header of 
the received frame, is set to one. 

- In the dynamic segment the startup frame indicator, contained in the header 
of the received frame, is set to one. 

- In the dynamic segment the null frame indicator, contained in the header of 
the received frame, is set to zero. 

 

3) Boundary violation error 
Boundary violation error denotes whether a boundary violation has occurred at the 
boundary of the corresponding slot. A boundary violation occurs if the node does not 
consider the channel to be idle at the boundary of a slot.  

3.2   Error Handling Mechanisms in the FlexRay Protocol 

In order to respond to errors, two basic mechanisms are provided in the POC module 
[11]. For significant errors, the POC:halt state is immediately entered. The POC also 
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contains a three-state degradation model for errors that can be endured for a limited 
period of time. In this case entry to the POC:halt state is deferred, at least temporarily, 
to support possible recovery from a potentially transient condition.  

 

Errors causing immediate entry to the POC:halt state 
There are three general conditions that trigger entry to the POC:halt state: 

 

• Product-specific error conditions such as BIST errors and sanity checks. 
• Error conditions detected by the host that result in a FREEZE command be-

ing sent to the POC via the CHI. 
• Fatal error conditions detected by the POC or one of the core mechanisms. 

 

Product-specific errors are accommodated by the POC, but not described in 
FlexRay specification. Similarly, host detected error strategies are supported by the 
POC's ability to respond to a host FREEZE command, but the host-based mechanisms 
that trigger the command are beyond the scope of this specification, hence they were 
not considered in this paper.  

 

Errors handled by the degradation model 
Integral to the POC is a three-state error handling mechanism referred to as the degrada-
tion model. It is designed to react to certain conditions detected by the clock synchroni-
zation mechanism that are indicative of a problem, but that may not require immediate 
action due to the inherent fault tolerance of the clock synchronization mechanism. This 
makes it possible to avoid immediate transitions to the POC:halt state while assessing 
the nature and extent of the errors. The degradation model is embodied in three POC 
states - POC:normal active, POC:normal passive, and POC:halt. 

In the POC:normal active state, the node is assumed to be either error free, or at 
least within error bounds that allow continued “normal operation”. Specifically, it is 
assumed that the node remains adequately time synchronized to the cluster to allow 
continued frame transmission without disrupting the transmissions of other nodes. 

In the POC:normal passive state, it is assumed that synchronization with the re-
mainder of the cluster has degraded to the extent that continued frame transmissions 
cannot be allowed because collisions with transmissions from other nodes are possi-
ble. Frame reception continues in the POC:normal passive state in support of host 
functionality and in an effort to regain sufficient synchronization to allow a transition 
back to the POC:normal active state. 

If errors persist in the POC:normal passive state or if errors are severe enough, the 
POC can transit to the POC:halt state. In this state it is assumed that recovery back to 
the POC:normal active state cannot be achieved, so the POC halts the core mechanisms 
in preparation for reinitializing the node. The conditions for transitioning between the 
three states comprising the degradation model are configurable. Furthermore, transitions 
between the states are communicated to the host allowing the host to react appropriately 
and to possibly take alternative actions using one of the explicit host commands. 

3.3   Error Indicator Registers of the FlexRay Communication Controller 

In this protocol, there are some registers that are set in the mentioned error con-
ditions. In this paper, these registers are named “error indicator registers”. Table 1 
shows these registers and their locations in the FlexRay communication controller.  
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Activating each of these registers, may result in one or more main error types. Faults, 
depending on when and where they occur, may change the expected value of some of 
these registers and cause one or more main error types. In this paper, the type of oc-
curred error is not considered. However, if any of registers in the Table 1, is unex-
pectedly changed, this change is considered as an error. 

Table 1. Error indicator registers (registers of the FlexRay showing the error occurrences) in 
the FlexRay protocol 

Registers Module Registers Modules
decoding_error_on_A

CODEC

vPOC_Freeze
POCTSS_ok vPOC_CHIHaltRequest

TSS_too_long vPOC_ErrorMode
FSS_ok zSyncCalcResult CSP

payload_ok Content_error_on_A

FSP

trailer_ok Fatal_protocol_error
BSS_ok T_StatusSlot_ValidFrame
FES_ok T_StatusSlot_SyntaxError
zBssError T_StatusSlot_ContentError

Header_Crc_error T_StatusSlot_TxConflict
Frame_Crc_error T_StatusSlot_BViolation  

4   Experimental Environment 

The FlexRay communication controller was implemented by hardware description 
language, Verilog HDL, and specifications of this controller, e.g. timing and configu-
ration, were tested according to the FlexRay protocol conformance test specification 
[20]. This controller, according to its specifications [11], has six modules to perform 
its functions: controller host interface (CHI), protocol operation control (POC), clock 
synchronization process (CSP), frame and symbol process (FSP), media access con-
trol (MAC), and coding and decoding (CODEC). A cluster was formed consisting of 
4 nodes with single bus topology (Fig. 4). In this topology, a node is composed of a 
host and a communication controller. The host typically is a hardware unit that gener-
ates data to exchange with other nodes through a communication channel. 

In the experiments, instead of a real host, a data generator was implemented to 
generate static frames with fixed length and dynamic frames with variable length at 
the start of the communication cycles. In this cluster, any node was allowed to send 
and receive frames on the communication channel.  

 

Fig. 4. Experimental setup 
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To investigate the fault tolerance of the FlexRay communication controller, transient 
single bit-flip faults were injected in all accessible registers of communication controller 
modules of the node 2 and their effects on the error indicator registers were observed in 
node 2 and node 4 (for observing more  fault effects); and results were stored. 

4.1   Fault Sensitivity Calculation Process 

To inject the transient single bit-flip faults at the behavioral level in node 2, the SIN-
JECT fault injection tool [21] was used. 

A fault sensitivity calculation process of a bit, by using SINJECT tool, consists of 
four steps:  

 

1- When the given workload is applied, behaviors of the error indicator registers 
in a fault-free network are simulated and stored. 

2- During the second step, to consider fault effects, the given workload is applied 
again to the network, a single transient bit-flip fault is injected to a bit of a 
communication controller register of node 2, at a random time, and the behav-
ior of the error indicator registers of node 2 and node 4 are observed. 

3- During the third step of the fault sensitivity calculation process, the faulty 
network behavior is compared with the behavior of the fault-free network, 
which is gathered at first step, and if there is a mismatch, this injected fault is 
considered as an activated fault and otherwise, this injected fault is considered 
as an overwritten fault. 

4- To achieve accurate fault sensitivity of a bit, several faults should be injected 
to this bit (repeating the first three steps). After injecting enough bit-flip faults 
and determining the number of activated faults (be Equation 1), the fault sen-
sitivity of this bit is calculated by Equation 2:  

#injected faults #activated faults #overwritten faults= +  

Number of activated faults
fault sensitivity of a bit= 100%

Number of all injceted faults to that bit
×  

The process was repeated for all bits in all accessible registers in FlexRay commu-
nication controller and the fault sensitivity of these registers was determined. 

4.2   Fault Tolerance Improvement Strategies 

After determining the fault sensitivity of a register, if its sensitivity was more than an 
acceptable value, a proper fault-tolerant technique would be used to reduce its vulner-
ability. The Hamming code technique with single bit correction ability and Triple 
Modular Redundancy (TMR) technique were used for this purpose. 

The Hamming technique was implemented on several sets of vulnerable registers. 
Those sets were organized such that most related registers were encapsulated in a set; 
and the size of each set varied between 10 bits and 32 bits. This implementation did 
not incur any delay or limitation to access to protected registers. After changing value 
of a protected register in a register set, due to protocol operations, Hamming bits of 
that register set is calculated while other parts of communication controller were al-
lowed to access to that register set. 

(1) 

(2) 
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TMR or Hamming techniques should be used consciously; for example, if there is 
a highly fault sensitive register which immediately triggers other parts of communica-
tion controller by changing its value, the Hamming code technique should not be used 
to reduce the sensitivity of this register. The main reason is that if a bit-flip fault oc-
curs in this register, the other parts of communication controller react to that fault 
immediately and some errors may occur in other parts of communication controller; 
in such situation, if Hamming technique is used, the occurred fault in the register is 
detected and corrected while other parts of communication controller react to this 
changing value again. Consequently, a bit-flip fault causes two incorrect reactions in 
other communication parts. Also, if Hamming technique is implemented such that the 
accessibility to that register is not allowed until the Hamming bits of this register are 
calculated, some delay is inserted into the operation of communication controller and 
this delay may corrupt the timing of FlexRay protocol operations. In this situation, the 
TMR technique is the better option, but if the imposed delay due to Hamming tech-
nique for this type of register does not damage the FlexRay protocol timings, by 
checking and testing according to the FlexRay protocol conformance test specifica-
tion [20], it is beneficial to use Hamming technique instead of TMR technique. 

On the other hand, if there is a highly fault sensitive register which does not trigger 
immediately other parts of communication controller by changing its value, the TMR 
technique should not be used because of its ultra-high hardware overhead (200%). In 
this condition, the Hamming technique is the better option. 

In this paper, with respect to properties of the FlexRay communication controller 
registers, the TMR technique and the Hamming technique (without incurring any de-
lay) are suggested to improve fault tolerance of this controller. 

5   Experimental Results 

In this paper, to assess the fault sensitivity of the FlexRay communication controller, 
the nodes were connected through a passive bus network. The main reason of select-
ing bus topology is to prevent some error propagations in star coupler of star topol-
ogy. This prevention results in hiding the fault sensitivity of some communication 
controller registers. 

To simulate the experiments, the ModelSim 5.5 simulation environment was used. 
The simulation includes four communication cycles; in the first two cycles, single 
transient bit-flip fault was injected randomly, then simulation was resumed two cycles 
to guarantee that the injected fault caused an error or overwritten. 

5.1   The FlexRay Communication Controller Modules 

To reach an accurate fault sensitivity of each register, 50 transient bit-flip faults were 
injected to each bit of all accessible FlexRay controller registers (according to the 
fault sensitivity calculation process) and gathered results were investigated. If there 
existed a register with more than 20% of fault sensitivity, a proper fault-tolerant tech-
nique based on properties of this register were used to reduce its vulnerability. 

As discussed in the previous section, the TMR technique was only used for regis-
ters which were immediately triggered other communication controller parts with 
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their changing values. In this controller, all of these kinds of registers were single-bit 
register; consequently, for each single-bit register, two redundant flip-flops were added 
to implement the TMR technique. Furthermore, to implement the Hamming technique, 
all vulnerable registers which were not improved by TMR technique, were grouped in 
some sets. These register sets were organized as discussed in the previous section. 

The results show that the TMR technique masks all injected faults but the Hamming 
technique is not able to tolerate all injected faults; because it is probable that faulty reg-
isters are used immediately before they are corrected. The experiment results are pre-
sented in Table 2, whereas the modeled FlexRay communication controller is not still 
synthesizable, the estimated hardware overhead is based on the number of accessible 
flip-flops. Table 3 contains hardware overhead of implemented techniques. 

Table 2. Fault injection results 

FlexRay
Module

#
Injected
Faults

Standard FlexRay Improved FlexRay
Improvement

(%)Activated Faults Activated Faults

# % # %

POC 5200 2343 45.1 512 9.8 357
CODEC 32300 5396 16.7 3586 11.1 50
MAC 11050 1805 16.3 1181 10.7 52
CSP 47850 16574 34.6 4774 10 246
FSP 6850 1230 18 688 10 80
CHI 32350 8154 25.2 3300 10.2 147
ALL 135600 35502 26.2 14041 10.3 154

 
 
 

FlexRay
Modules

Standard FlexRay Improved FlexRay HW
Overhead

(%)# Registers # Flip-Flops # Flip-Flops

POC 28 104 (104 + 32) = 136 30.8
CODEC 104 646 (646 + 46) = 692 7.1
MAC 64 221 (221 + 28) = 249 12.7
CSP 94 957 (957 + 162) = 1119 16.9`
FSP 41 137 (137 + 20) = 157 14.6
CHI 77 647 (647 + 66) = 713 10.2
ALL 408 2712 (2712 + 354 ) = 3066 13.0

 

In the modeled FlexRay communication controller, all registers, signals and other 
components are named based on FlexRay specification document (version 2.1, revi-
sion A) [11]; for more details about their responsibilities, readers are referred to [11]. 
Based on experimental results, Fig. 5 shows the fault sensitivity of all FlexRay com-
munication controller modules in the standard implementation (according to the 
FlexRay specifications [11]) and in the improved implementation. In this figure, the 
fault sensitivities of the FlexRay module registers which are more than 20% sensitive 
to injected faults are presented. For more clarity, fault sensitivities are sorted in a de-
scending order. 

Table 3. Hardware overheads 
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Fig. 5. Fault sensitivities of FlexRay modules in standard and improved implementations  
 

(a) Fault sensitivities of FlexRay Registers 
(POC Module) 

(b) Fault sensitivities of FlexRay Registers 
(MAC Module) 

(c) Fault sensitivities of FlexRay Registers (CODEC Module)

(d) Fault sensitivities of FlexRay Registers (CSP Module) 
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Fig. 5. (continued) 

5.2   Overall Results 

In general, fault sensitivity analysis of the FlexRay modules shows that there were 30 
registers with 100% sensitivity. This fact may question use of this protocol for safety-
critical applications. In addition, in Fig. 5 there is a severe variance in the fault sensi-
tivities of the FlexRay controller registers. Our improvements make them smooth. 

The FlexRay communication controller contains 408 single-bit and multiple-bit 
registers in total. A number of 135,600 transient single-bit flip faults were injected to 
them. 35,502 faults caused at least one error; consequently, the fault sensitivity of the 
whole controller was about 26.2%. 

After improving the fault sensitivity of the FlexRay communication controller, its 
sensitivity was reduced from 26.2% to 10.3% (about 154% improvement), while add-
ing 354 extra flip-flops costs the controller about 13% flip-flop overhead. 

Fig. 6 shows the fault sensitivity of each module in the standard implementation 
and the improved implementation of FlexRay communication controller. This figure 
also shows that the POC module is the most sensitive part of FlexRay communication 
controller and CODEC module is the least sensitive part. Furthermore, our results 
show that we were able to reduce the sensitivity of FlexRay modules to almost equal  
 

(f) Fault sensitivities of FlexRay Registers (CHI Module)

(e) Fault sensitivities of FlexRay Registers (FSP Module)
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Fig. 6. Fault Sensitivity of FlexRay Communication Controller 

values (difference about 1%) as compared with previous values in the standard im-
plementation. 

6   Conclusions 

Safety-critical automotive control systems are nowadays complex distributed embed-
ded systems and the communication protocol is an essential part of them. The 
FlexRay communication protocol is now expected to become the future standard for 
in-vehicle communication. 

In this paper, the fault sensitivities and vulnerabilities of FlexRay communication 
controller registers, based on 135,600 single-bit flip fault injections to all accessible 
registers, are investigated.  

The results show that the fault sensitivities of POC, CODEC, MAC, CSP, FSP, and 
CHI modules are 45.1%, 16.7%, 16.3%, 34.6%, 18%, and 25.2% respectively. Moreover, 
according to the fault injection results, among all 408 accessible registers, 30 registers 
were immediately affected by the injected faults, 84 registers were affected between 20% 
and 99%, while the remaining (294) registers were affected by less than 20%. 

After determining the sensitive registers, proper fault masking and fault-tolerant 
techniques, based on their properties, are applied to reduce the vulnerability of these 
registers. This caused, the fault sensitivity of POC, CODEC, MAC, CSP, FSP, and 
CHI modules to reduce to 9.85%, 11.1%, 10.7%, 10%, 10%, and 10.2% respectively. 

In general, the fault sensitivity of FlexRay communication controller was improved 
more than 2 times and in this improved implementation, none of the registers has 
more than 20% fault sensitivity.  
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