Skip to main content

Detection of Sample Differences from Dot Plot Displays

  • Conference paper
Diagrammatic Representation and Inference (Diagrams 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5223))

Included in the following conference series:

  • 1788 Accesses

Abstract

Cleveland and McGill [10] concluded that dot plots are effective when one judges position along a common scale. We assessed the ability of graph readers to detect sample mean differences in multipanel dot plots. In Experiment 1, plots containing vertically arranged panels with different sample sizes and levels of variability were presented. Sensitivity was greater with large samples and low variability. In Experiment 2, sensitivity depended on the location of the comparison sample, with vertical and superimposed arrays yielding greater sensitivity than horizontal or diagonal arrays. Horizontal arrays also produced a bias to judge data in right-most panels as having higher means. Experiment 3 showed that ordering of data had little effect on sensitivity or bias. The results suggest that good graph design requires attention to how the specific features of a graphical format influence perceptual judgments of data

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazerman, C.: Theoretical integration in experimental reports in twentieth-century physics: Spectroscopic articles in physical review, 1893-1980. In: Bazerman, C. (ed.) Shaping Written Knowledge, pp. 153–186. University of Wisconsin Press, Madison (1988)

    Google Scholar 

  2. Butler, D.L.: Graphics in psychology: Pictures, data, and especially concepts. Behav. Res. Meth. Instrum. Comput. 25, 81–92 (1993)

    Google Scholar 

  3. Chambers, J.M., Cleveland, W.S., Kleiner, B., et al.: Graphical methods for data analysis. Wadsworth & Brooks/Cole, Pacific Grove (1983)

    MATH  Google Scholar 

  4. Cleveland, W.S.: The elements of graphing data (rev. ed.). AT&T Bell Laboratories, Murray Hill (1994)

    Google Scholar 

  5. Cleveland, W.S.: Visualizing data. AT&T Bell Laboratories, Murray Hill (1993)

    Google Scholar 

  6. Cleveland, W.S.: The elements of graphing data. Hobart Press, Summit (1985)

    Google Scholar 

  7. Cleveland, W.S.: Graphical methods for data presentation: Full scale breaks, dot charts, and multibased logging. Am Stat. 38, 270–280 (1984)

    Article  Google Scholar 

  8. Cleveland, W.S.: Graphs in Scientific Publications. Am Stat. 38, 261–269 (1984)

    Article  Google Scholar 

  9. Cleveland, W.S., Diaconis, P., McGill, R.: Variables on scatterplots look more highly correlated when the scales are increased. Science 216, 1138–1141 (1982)

    Article  Google Scholar 

  10. Cleveland, W.S., McGill, R.: Graphical perception and graphical methods for analyzing scientific data. Science 229, 828–833 (1985)

    Article  Google Scholar 

  11. Cleveland, W.S., McGill, R.: An experiment in graphical perception. Int. J. Man Mach. Stud. 25, 491–500 (1986)

    Article  Google Scholar 

  12. Gigerenzer, G., Murray, D.J.: Cognition as intuitive statistics. Erlbaum, Hillsdale (1987)

    Google Scholar 

  13. Graham, J.L.: Illusory trends in the observations of bar graphs. J. Exp. Psychol. 20, 597–608 (1937)

    Article  Google Scholar 

  14. Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)

    Google Scholar 

  15. Hankins, T.K.: Blood, dirt, and nomograms: A particular history of graphs, pp. 50–80. ISIS (1999)

    Google Scholar 

  16. Hollands, J.G., Spence, I.: Judgments of change and proportion in graphical perception. Hum. Factors 34, 313–334 (1992)

    Google Scholar 

  17. Holmes, F.L., Olesko, K.M.: The images of precision: Helmholtz and the graphical method in physiology. In: Wise, M.N. (ed.) The Values of Precision, pp. 198–221. Princeton University Press, Princeton (1995)

    Google Scholar 

  18. Kosslyn, S.M.: Graph design for the eye and mind. Oxford University Press, New York (2006)

    Google Scholar 

  19. Kosslyn, S.M.: Elements of graph design. W. H. Freeman, New York (1994)

    Google Scholar 

  20. Kosslyn, S.M.: Cognitive neuroscience and the human self. In: Harrington, A. (ed.) So Human a Brain: Knowledge and Values in the Neurosciences, pp. 37–56. Birkhaeuser, Boston (1992)

    Google Scholar 

  21. Krohn, R.: Why are Graphs so Central in Science? Biol. Philos. 6, 181–203 (1996)

    Article  Google Scholar 

  22. Latour, B.: Drawing things together. In: Lynch, M., Woolgar, S. (eds.) Representation in Scientific Practice, pp. 19–68. MIT Press, Cambridge (1990)

    Google Scholar 

  23. Legge, G.E., Gu, Y., Luebker, A.: Efficiency of graphical perception. Percept Psychophys. 46, 365–374 (1989)

    Google Scholar 

  24. Lewandowsky, S., Spence, I.: Discriminating strata in scatterplots. J. Am. Stat. Assoc. 84, 682–688 (1989)

    Article  Google Scholar 

  25. Licklider, J.C.R.: Theory of signal detection. In: Swets, J.A. (ed.) Signal Detection and Recognition by Human Observers: Contemporary Readings, pp. 95–121. Wiley, New York (1964)

    Google Scholar 

  26. Macmillan, N.A., Creelman, C.D.: Detection Theory: A User’s Guide. Cambridge University Press, New York (1991)

    Google Scholar 

  27. Peden, B.F., Hausmann, S.E.: Data graphs in introductory and upper level psychology textbooks: A content analysis. Teach. Psychol. 27, 93–97 (2000)

    Article  Google Scholar 

  28. Poulton, E.C.: Geometric illusions in reading graphs. Percept. Psychophys. 37, 543–548 (1985)

    Google Scholar 

  29. Sasieni, P.D., Royston, P.: Dotplots. 45, 219–234 (1996)

    Google Scholar 

  30. Schutz, H.G.: An evaluation of formats for graphic trend displays: Experiment II. Hum. Factors 3, 99–107 (1961)

    Google Scholar 

  31. Smith, L.D., Boynton, D.M., Stubbs, D.A.: Intuitive statistics as signal detection: Perceptual judgments of sample differences. Poster presented at the meeting of the American Psychological Association, Boston, MA (1990)

    Google Scholar 

  32. Smith, L.D., Stubbs, D.A., Best, L.A.: Graphical illusion in multipanel dot plots: Method-of-adjustment analysis. Paper presented at the American Psychological Association Annual Meeting, Honolulu (2004)

    Google Scholar 

  33. Smith, L.D., Best, L.A., Cylke, V.A., et al.: Psychology without p Values: Data Analysis at the turn of the 19th century. Am. Psychol. 55, 260–263 (2000)

    Article  Google Scholar 

  34. Smith, L.D., Best, L.A., Stubbs, D.A., et al.: Constructing knowledge: The role of graphs and tables in hard and soft psychology. Am. Psychol. 57, 749–761 (2002)

    Article  Google Scholar 

  35. Spencer, J.: Estimating averages. Ergonomics 4, 317–328 (1961)

    Article  Google Scholar 

  36. Sternberg, R.J.: The psychologist’s companion: A guide to scientific writing for students and researchers, 3rd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  37. Tukey, J.W.: Data-based graphics: Visual display in the decades to come. Stat. Sci. 5, 327–339

    Google Scholar 

  38. Wainer, H.: Visual Revelations: Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot. Copernicus, New York (1997)

    Google Scholar 

  39. Wainer, H., Velleman, P.F.: Statistical graphics: Mapping the pathways of science. Annu. Rev. Psychol. 52, 305–335 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gem Stapleton John Howse John Lee

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Best, L.A., Smith, L.D., Stubbs, D.A. (2008). Detection of Sample Differences from Dot Plot Displays. In: Stapleton, G., Howse, J., Lee, J. (eds) Diagrammatic Representation and Inference. Diagrams 2008. Lecture Notes in Computer Science(), vol 5223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87730-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87730-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87729-5

  • Online ISBN: 978-3-540-87730-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics