Abstract
Microarrays are capable of detecting the expression levels of thousands of genes simultaneously. In this paper, a new method for gene selection based on independent variable group analysis is proposed. In this method, we first used t-statistics method to select a part of genes from the original data. Then we selected the key genes from the selected genes by t-statistics for tumor classification using IVGA. Finally, we used SVM to classify tumors based on the key genes selected using IVGA. To validate the efficiency, the proposed method is applied to classify three different DNA microarray data sets. The prediction results show that our method is efficient and feasible.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alhoniemi, E., Honkela, A., Lagus, K., Seppä, J., Wagner, P., Valpola, H.: Compact Modeling of Data Using Independent Variable Group Analysis. Technical Report E3, Helsinki University of Technology. Publications in Computer and Information Science, Espoo, Finland (2006)
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)
Ambroise, C., McLachlan, G.J.: Selection Bias in Gene Extraction on the Basis of Microarray Gene-Expression Data. Proc. Natl. Acad. Sci. USA 99, 6562–6566 (2002)
Bae, K., Mallick, B.K.: Gene Selection Using a Two-Level Hierarchical Bayesian Model. Bioinformatics 20, 3423–3430 (2004)
Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., Sondak, V., Hayward, N., Trent, J.: Molecular Classification of Cutaneous Malignant Melanoma by Gene Expression Profiling. Nature 406, 536–540 (2000)
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support Vector Machines Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 16, 906–914 (2000)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)
Kraskov, A., Stögbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical Clustering Using Mutual Information. Europhysics Letters 70, 278–284 (2005)
Lagus, K., Alhoniemi, E., Valpola, H.: Independent Variable Group Analysis. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 203–210. Springer, Heidelberg (2001)
Li, W., Sun, F., Grosse, I.: Extreme Value Distribution Based Gene Selection Criteria for Discriminant Microarray Data Analysis Using Logistic Regression. Journal of Computational Biology 1, 215–226 (2004)
Nilsson, M., Gustafsson, H., Andersen, S.V., Kleijn, W.B.: Gaussian Mixture Model Based Mutual Information Estimation between Frequency Bands in Speech. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. I–525–I–528 (2002)
Pochet, N., De Smet, F., Suykens, J.A.K., De Moor, B.L.R.: Systematic Benchmarking of Microarray Data Classification: Assessing the Role of Non-Linearity and Dimensionality Reduction. Bioinformatics 20, 3185–3195 (2004)
Studený, M., Vejnarová, J.: The Multiinformation Function as a Tool for Measuring Stochastic Dependence. In: Learning in Graphical Models, pp. 261–297. MIT Press, Cambridge (1999)
Zhang, H.H., Ahn, J., Lin, X., Park, C.: Gene Selection Using Support Vector Machines with Non-Convex Penalty. Bioinformatics 22, 88–95 (2006)
Huang, D.S., Zheng, C.H.: Independent Component Analysis Based Penalized Discriminant Method for Tumor Classification Using Gene Expression Data. Bioinformatics 22, 1855–1862 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheng, C., Zhang, L., Li, B., Xu, M. (2008). Gene Expression Data Classification Using Independent Variable Group Analysis. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87734-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-87734-9_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87733-2
Online ISBN: 978-3-540-87734-9
eBook Packages: Computer ScienceComputer Science (R0)