
Space-Time Tradeoffs for Proximity Searching

in Doubling Spaces

Sunil Arya⋆1, David M. Mount⋆⋆2, Antoine Vigneron⋆ ⋆ ⋆3, and Jian Xia†1

1 Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{arya,piper}@cse.ust.hk

2 Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland 20742

mount@cs.umd.edu
3 INRA, UR341 Mathématiques et Informatique Appliquées,

78352 Jouy-en-Josas, France
antoine.vigneron@jouy.inra.fr

Abstract. We consider approximate nearest neighbor searching in met-
ric spaces of constant doubling dimension. More formally, we are given
a set S of n points and an error bound ε > 0. The objective is to
build a data structure so that given any query point q in the space,
it is possible to efficiently determine a point of S whose distance from
q is within a factor of (1 + ε) of the distance between q and its nearest
neighbor in S. In this paper we obtain the following space-time trade-
offs. Given a parameter γ ∈ [2, 1/ε], we show how to construct a data
structure of space nγO(dim) log(1/ε) space that can answer queries in time
O(log(nγ))+(1/(εγ))O(dim). This is the first result that offers space-time
tradeoffs for approximate nearest neighbor queries in doubling spaces. At
one extreme it nearly matches the best result currently known for dou-
bling spaces, and at the other extreme it results in a data structure that
can answer queries in time O(log(n/ε)), which matches the best query
times in Euclidean space. Our approach involves a novel generalization
of the AVD data structure from Euclidean space to doubling space.

1 Introduction

Nearest neighbor searching is a fundamental problem in computational geometry
with numerous applications in areas such as pattern recognition, information
retrieval, machine learning, and robotics. The goal is to store a set S of n points
so that, for any query point q, we can quickly return its nearest neighbor in S.
As the problem is computationally difficult in most settings, researchers have

⋆ Research supported by RGC Grant HKUST6184/04E.
⋆⋆ Research supported in part by NSF grant CCF–0635099.

⋆ ⋆ ⋆ Research partially supported by a Marie Curie international reintegration grant.
† Research supported by RGC Grant HKUST6184/04E.



considered a variant in which it suffices to return an approximate answer. Given
an error bound ε > 0, a point p ∈ S is said to be an ε-approximate nearest
neighbor (denoted ε-NN ) of q if its distance from q is at most (1 + ε) times the
distance between q and its nearest neighbor in S.

Approximate nearest neighbor searching has been studied extensively in Eu-
clidean spaces. Recently there has been considerable interest in metric spaces as
well. Data structures for proximity searching in metric spaces have been known
for some time (see, e.g., [6, 10, 18]). Clarkson [8] and later Karger and Ruhl [14]
introduced models designed to capture the sphere packing and local growth prop-
erties of low-dimensional Euclidean spaces. Much of the recent work has focused
on metric spaces of low doubling dimension [4, 11]. The doubling dimension of
a metric space is the minimum value ρ such that every ball in the space can be
covered by 2ρ balls of half the radius. This model was applied to various proxim-
ity problems by Krauthgamer, Lee, and co-authors [11,15–17]. The results have
been extended by Har-Peled and Mendel [13] and others [5, 9].

The results described in these papers on doubling spaces apply in the so called
black-box model, in which points of the space can only be accessed through a
black box that computes the distance between any two points in constant time.
One of the advantages of this approach is that it relies on the barest set of
assumptions, and so it is possible to obtain the conceptually simplest and most
general algorithms. In this model, it is known that given a set of n points in a
metric space of doubling dimension dim, ε-approximate nearest neighbor queries
can be answered in time O(log n) + (1/ε)O(dim) using a data structure of linear
space [9,13]. It is also observed in [13] that this result is optimal in the black-box
model, as there is a lower bound of Ω(log n) + (1/ε)Ω(dim) on the query time in
this model irrespective of the space used. (These asymptotic bounds, like ours,
hide multiplicative factors that depend on the doubling dimension, except for
the space bounds of Cole and Gottlieb [9], which are truly O(n), irrespective of
the dimension.)

Unfortunately, this query time compares unfavorably to the fastest query
times known for Euclidean spaces. In Euclidean d-space, it is possible to answer
ε-approximate nearest neighbor queries in time O(log(n/ε)) and space roughly
O(n/εd) through the use of a data structure called an approximate Voronoi
diagram (or AVD) [1,2,12]. The difference in query time is quite significant, since
in practice factors of the form (1/ε)d dominate the query time. It is also shown
in [2] that space-time tradeoffs can be achieved. Thus, by limiting consideration
to the purely implicit black-box model, simplicity and generality are achieved at
the expense of efficiency and flexibility.

This raises the important question of whether it is possible to achieve results
for approximate nearest neighbor searching that are comparable to the best re-
sults for Euclidean space in efficiency and flexibility, but in a model that provides
the generality of metric spaces of low doubling dimension. The aforementioned
lower bound indicates that this is not possible within the black-box model. In
this paper we provide an affirmative answer to this question by strengthening the
model slightly, which we call the weakly explicit model. In particular, we assume



the doubling space is endowed with a doubling oracle, which, given any ball in
the metric space returns in constant time a covering with a constant number of
balls of half the radius (see Section 2).

Our approach is based on generalizing the AVD data structure to met-
ric spaces in the weakly explicit model. We obtain the following space-time
tradeoffs for approximate nearest neighbor searching in metric spaces of dou-
bling dimension dim. Given a parameter γ ∈ [2, 1/ε], we show how to con-
struct AVDs of nγO(dim) log(1/ε) space that can answer ε-NN queries in time
O(log(nγ))+ (1/(εγ))O(dim). This is the first result that offers space-time trade-
offs for approximate nearest neighbor queries in doubling spaces. At one extreme
(γ = 2), we obtain an AVD of O(n log(1/ε)) space that answers queries in time
O(log n)+(1/ε)O(dim). This result nearly matches the best result currently known
for doubling spaces [9, 13], albeit in our stronger model. At the other extreme
(γ = 1/ε), we obtain an AVD of n(1/ε)O(dim) space that can answer queries in
time O(log(n/ε)). This matches the query times for AVDs in Euclidean spaces,
and overcomes the restrictive lower bound imposed by the black-box model for
doubling spaces.

1.1 Overview of Techniques

In Euclidean space, the AVD is a quadtree-based partitioning of space into con-
stant complexity cells, where each cell stores one or more representatives such
that, given a query point q that lies within a cell, one of the associated repre-
sentatives is an ε-NN of q. Queries are answered by first locating the cell that
contains the query point and then scanning the list of stored representatives to
find the closest one. The key idea underlying the construction of AVDs in Eu-
clidean space is to partition space into cells, such that each cell enjoys certain
separation properties with respect to the point set S. These separation properties
assert that the region surrounding each cell is simple enough that we can answer
ε-NN queries with the help of a small set of representatives. The construction is
based on the box-decomposition tree (or the compressed quadtree), which yields
a hierarchical partitioning of space into fat cells. The construction is bottom-up,
first generating quadtree boxes and then building a tree structure over them.

In metric spaces we do not have the same explicit access to the ambient
space’s structure, and so we need a different approach. While similar in spirit,
our generalization of AVDs to doubling metric spaces differs in the types of cells
generated, the method used to generate these cells, and the separation properties
they satisfy. It will be necessary to relax the AVD’s partitioning of space to
allow for a covering instead. We know of no analogous decomposition structure
to the box-decomposition tree in doubling spaces, and so we have developed a
hybrid construction, which is neither purely top-down nor bottom-up. Roughly
speaking, the cells corresponding to all the nodes in the hierarchy that are in the
vicinity of the point set S are generated right in the beginning. Next, for each
such cell, we identify its children independently. We determine both the cells and
the child-parent relationships between them on the basis of the well-separated
pair decomposition [7, 13] of the point set. The resulting data structure is not



a tree, but a rooted directed acyclic graph, which we call a region-DAG. The
cells associated with the leaves of the region-DAG cover all of space and satisfy
certain separation properties with respect to the point set S. This feature enables
us to use region-DAGs for constructing AVDs in doubling spaces.

2 Preliminaries

We begin with some definitions. Let (M, d) be a metric space. We let B(x, r)
denote the closed ball of radius r centered at x, i.e., B(x, r) = {y ∈ M : d(x, y) 6

r}. For a ball b and any positive real η, we use ηb to denote the ball with the
same center as b and whose radius is η times the radius of b, and b̄ to denote the
set of points that are not in b.

The doubling dimension of M , denoted dim(M), is the minimum value ρ
such that every ball in M can be covered by 2ρ balls of half the radius. When
there is no ambiguity, we will write dim instead of dim(M). We say that M is a
doubling space if it has constant doubling dimension.

Throughout this paper, we will assume that the metric space M is doubling.
As mentioned earlier, our constructions will assume the existence of a doubling
oracle, which given any ball b of radius r in M , returns in 2O(dim(M)) time a
set of 2O(dim(M)) balls of radius r/2 covering b. Note that the centers of these
balls are not necessarily in the input point set. We view the points (data, query,
and covering-ball centers) as being drawn from some ambient metric space to
which this oracle has access. This motivates our use of the term weakly explicit
to describe this model.

A subset S ⊆ M is defined to be an r-net of M if (i) every point of M is
covered by a ball of radius r centered at some point of S and (ii) the pairwise
distance between any two points of S is Ω(r). It is well-known that such nets
always exist for any r > 0.

Throughout, we treat n, ε and γ as asymptotic quantities. The constant
factors hidden by the O(·) notation are independent of n, ε and γ, but may
depend on the doubling dimension.

2.1 The Well-Separated Pair Decomposition

We briefly review the notion of well-separated pair decomposition, as our con-
structions rely on it. Let S be a set of n points in the doubling space M . We
say that two sets of points X ⊆ S and Y ⊆ S are well-separated if there ex-
ist two disjoint balls of radius r covering X and Y respectively, such that the
distance between the centers of these balls is at least σr, where σ > 2 is a real
parameter called the separation factor. We refer to (X, Y ) as a well-separated
pair. In Euclidean space, if we imagine joining the centers of these two balls by a
line segment, the resulting geometric shape resembles a dumbbell. The balls are
the heads of the dumbbell. The length of a dumbbell is defined as the distance
between the centers of the balls.



Let x and y be two points in S. We say that a well-separated pair (X, Y )
contains x if x ∈ X ∪ Y , and we say that it separates x and y if (x, y) ∈
(X × Y ) ∪ (Y × X). These notions can also be applied in a natural way to the
dumbbell associated with a well-separated pair.

A well-separated pair decomposition (WSPD) of S is a set PS,σ = {{X1, Y1}, . . . ,
{Xm, Ym}} of pairs of subsets of S such that (i) for 1 6 i 6 m, Xi and Yi are
well-separated, and (ii) for any distinct points x, y ∈ S, there exists a unique pair
(Xi, Yi) that separates x and y. Given any n-point set in constant-dimensional
Euclidean space, Callahan and Kosaraju [7] showed that there exists a WSPD
of linear size. This result was generalized to doubling spaces by Har-Peled and
Mendel [13], who showed that the number of pairs in the WSPD of S is σO(dim)n
and it can be constructed in 2O(dim)n log n + σO(dim)n time. For each pair, their
construction also provides the corresponding dumbbell satisfying the separation
criteria mentioned above. Furthermore, the centers of both the dumbbell heads
are points of S.

The following preliminary lemma will be useful for us. It follows from the
definition of well-separatedness and the triangle inequality.

Lemma 1. Consider the WSPD of S with separation factor σ > 16. Consider
the dumbbell for a pair P = (X, Y ) in this WSPD. Let x and y denote the centers
of the dumbbell heads, and let ℓ = d(x, y) be the length of the dumbbell. Then for
any x′ ∈ X and y′ ∈ Y we have d(x, x′) 6 ℓ/16 and 7ℓ/8 6 d(x′, y′) 6 9ℓ/8.

3 The Region-DAG

In this section, we describe our construction of the region-DAG, which can be
viewed as a generalization of the box-decomposition tree [3] to doubling spaces.
Our AVD construction in doubling spaces described in Section 4 will rely cru-
cially on this data structure.

Let S be a set of n points in a doubling space (M, d). The region-DAG for
S is a directed acyclic graph in which each node is associated with a region of
space called a cell, which is the difference of two concentric balls, an outer ball
and an (optional) inner ball. If the inner ball exists, its radius is at most half the
radius of the outer ball. If a cell has no inner ball, we call it a simple cell (the
corresponding node is called a simple node), otherwise we call it a doughnut cell
(the corresponding node is called a doughnut node). Throughout this paper, for
a simple node u, we let bu denote the associated cell. The size of a cell (and the
corresponding node) is defined to be the radius of its outer ball. If a cell contains
no points of S, we say that it is empty, otherwise it is nonempty. If there is an
edge from node u to node v, we say that v is a child of u. If a node has no
children, it is called a leaf, otherwise it is an internal node.

Our construction of the region-DAG involves two parameters γ > 2 and
β > γ. These parameters help to control the degree of separation enjoyed by
the leaf cells with respect to the points of S. As we will see later, varying these
parameters enables us to achieve space-time tradeoffs in our AVD constructions.



The key properties satisfied by the region-DAG are given below. We provide
some intuition on how these properties aid in constructing AVDs in doubling
spaces. Property (i) says that there is a node whose associated ball, which is
called the root ball, contains the point set S close to its center. This property is
useful for answering queries when the query point q lies outside the root ball.
If, however, q lies inside the root ball, then we first find a leaf cell containing
q. Such a leaf cell must exist because, by property (iii), the cell associated with
any internal node is covered by the cells associated with its children. Property
(iv) guarantees that we can find this leaf cell quickly (even though the depth of
the region-DAG can be large). Property (ii) describes the separation properties
satisfied by the leaves, which help in answering queries efficiently.

(i) There exists a node whose associated cell is a ball b, which is centered at a
point of S and which satisfies S ⊆ 1

β
b. (We maintain a pointer to one node

satisfying this property, which is called the root of the region-DAG. The cell
associated with the root is called the root ball.)

(ii) There are two kinds of leaves, simple leaves and doughnut leaves, with the
following separation properties. (See Figure 1.)
(a) Let ball b denote the cell associated with a simple leaf. Then either the

ball γb is empty, or it contains one point of S, which is the center of b.

b

γb

Empty simple leaf Nonempty simple leaf

γb

b

bO

bI

γbO

Doughnut leaf

Fig. 1. Separation properties of leaf cells.

(b) Let bO and bI denote the outer and inner ball, respectively, of the cell

associated with a doughnut leaf. Then S ∩γbO ⊆
(

1
β

)

bI . (Note that the

doughnut cell bO \ bI is empty.)
(iii) The cell associated with an internal node is always simple, and is covered

by the cells associated with its children. More precisely, there are two kinds
of internal nodes, splitting nodes and shrinking nodes, with the following
properties. Let the cell associated with an internal node u be a ball b of
radius r.
(a) If u is a splitting node, then it has a constant number of children (de-

pending on the doubling dimension). Moreover, each child is simple, and
its size is in [r/64, r/2].

(b) If u is a shrinking node, then it has two children. One of these children
is a doughnut leaf. The outer ball associated with this leaf is b, and the



inner ball associated with it is a ball b′, whose radius is at most r/2.
(That is, the doughnut leaf cell is b \ b′.) The cell associated with the
other child is a ball covering b′, having radius at most r/2. We refer to
the child that is a doughnut leaf as the outer child of u and refer to the
other child as the inner child of u.

(iv) Let b denote the root ball defined in property (i). Given a point q ∈ b, we
can find a leaf cell containing q in O(log(nγ)) time.

It is clear from property (iii) that the size of a node is always smaller than that
of its parent by a factor of at least two, except for a doughnut leaf, whose size
is the same as that of its parent. It follows that the region-DAG has no cycle.

In Section 3.1, we will establish the following theorem, which shows that any
set S in doubling space admits a region-DAG of size linear in n, and it can be
constructed efficiently.

Theorem 1. Let γ > 2 and β > γ be two real parameters. Given a set S of n
points in doubling space M , there exists a region-DAG of size nγO(dim) log β sat-
isfying all of the above properties. Furthermore, this structure can be constructed
in time O (n log n) + nγO(dim) log2 β.

3.1 Construction

Recall that our construction uses two parameters γ > 2 and β > γ that determine
the separation properties of the leaves with respect to the points of S. Before
constructing the region-DAG, we first construct a WSPD for S using σ = 16. The
number of pairs in the WSPD is O(n) and the time to construct it is O(n log n).
We associate each pair in this WSPD with several balls as follows. Let x, y ∈ S
denote the points at the centers of the heads of the dumbbell corresponding to a
pair, and let ℓ = d(x, y) denote the length of this dumbbell. Then the associated
balls are the balls of radius 2iℓ centered at x and y, for all integers i such

that
⌊

log
(

1
c1β

)⌋

6 i 6 ⌈log(c2β)⌉, where c1, c2 > 1 are suitable large positive

constants. We will refer to these balls as type-1 balls. We associate a unique
node in the DAG with each distinct type-1 ball. Note that for this purpose, we
treat any two type-1 balls as distinct if they have different centers or radii or
are generated by different pairs in the WSPD. We will refer to these nodes as
type-1 nodes. Since there are O(n) pairs in the WSPD and we generate O(log β)
balls for each pair, the total number of type-1 nodes is O(n log β). Since there is
a point of S at the center of each type-1 ball, these nodes are always nonempty.
Besides the type-1 nodes, we will also create some new nodes in the DAG during
the construction, which will always be empty (but not necessarily leaves). We
will call them type-2 nodes.

We process each type-1 node u as follows. Recall that bu denotes the cell
associated with u. We assume that bu is a ball of radius r centered at a point
p ∈ S. Roughly speaking, if all the points of S \ {p} are very far from p, we will
make u a leaf, and if all the points of S ∩ γbu are very close to p, we will make
it a shrinking node. Otherwise, if there are points of S at intermediate distances



(i.e., neither too far nor too close), then we will make u a splitting node. Since it
is too time consuming to examine the points of S for the purpose of these tests,
we will instead examine certain well-separated pairs containing p, which yield
sufficient information on the position of the points.

bu

p

2γr
r

P̃

r/16β

Fig. 2. Case where u is a splitting node.

We begin by finding the shortest dumbbell P̃ in the WSPD that contains p
and has length at least r/(16β). If P̃ has length at most 2γr, then u is made
into a splitting node. (See Figure 2.) Otherwise, it is clear that there are no
dumbbells containing p of length between r/(16β) and 2γr. We then look for
the longest dumbbell P̂ containing p that has length at most r/(16β). If we find
such a dumbbell, then u is made into a shrinking node (See Figure 3), otherwise
it is made into a simple leaf. We will establish property (ii.a) for the case when u
is made into a simple leaf. After that we will describe how children are assigned
when u is a shrinking and splitting node, respectively, and establish properties
(ii) and (iii) for these cases.

p

r/16β r
2γr

P̂
P̃

Fig. 3. Case where u is a shrinking node.

u is a leaf. We first consider the case when u is made into a leaf. Recall that
in this case there are no dumbbells containing p of length at most 2γr. By
Lemma 1, it follows that the distance between p and any other point of S is at
least (7/8)2γr. Thus, all the points of S \ {p} lie outside the ball γbu, which
proves that u satisfies property (ii.a).



u is a shrinking node. We next consider the case when u is made into a shrinking
node. Recall that in this case there are no dumbbells containing p that have
length between r/(16β) and 2γr. Recall also that we have already found the
longest dumbbell P̂ containing p that has length at most r/(16β). We will assign
two children to node u. Before describing these children, we first show that all
the points of S in γbu are very close to p. Let ℓ̂ denote the length of P̂ and let b̂
denote the ball B(p, 2ℓ̂). We claim that S∩γbu ⊆ b̂. To prove this claim, let x be
any point of S∩γbu. Since d(p, x) 6 γr, it follows from Lemma 1 that the length
ℓ of the dumbbell separating p and x is at most 8γr/7 < 2γr. By our earlier
remarks, there are no dumbbells containing p that have length between r/(16β)
and 2γr. Therefore, ℓ < r/(16β). Since P̂ is the longest dumbbell containing p

that has length at most r/(16β), it follows that ℓ 6 ℓ̂. Again, applying Lemma 1,

it follows that d(p, x) 6 9ℓ/8 6 9ℓ̂/8 6 2ℓ̂. Thus, x ∈ b̂, which proves the claim.

We can now describe the two children of u. For one of these children, we
create a new node in the region-DAG whose associated cell is bu \ b′, where b′

is the ball βb̂. We make this child a doughnut leaf whose only parent is u. By

the claim above, S ∩ γbu ⊆
(

1
β

)

b′, and so (ii.b) holds. Further, since the radius

of b′ is 2βℓ̂ and ℓ̂ 6 r/(16β), it follows that the radius of b′ does not exceed
r/8 < r/2. Thus the condition given in (iii.b) for this child is satisfied.

We now describe the other child of u. Let p′ denote the point of S at the
center of that head of dumbbell P̂ that contains p, and let b′′ denote the ball
B(p′, 2⌈log 3β⌉ℓ̂). Assuming that c2 > 3, it is easy to see that b′′ is one of the type-
1 balls associated with dumbbell P̂ and so must have a unique corresponding
node in the region-DAG. We make this type-1 node the second child of u. To
establish property (iii.b), we need to show that b′′ covers b′ and has radius at

most r/2. Clearly, the radius of b′′ is at most 6βℓ̂. Since ℓ̂ 6 r/(16β), it follows

that the radius of b′′ is at most 3r/8 < r/2. By Lemma 1 we have d(p, p′) 6 ℓ̂/16.
Using this fact and the triangle inequality, it follows that

b′ = B(p, 2βℓ̂) ⊆ B

(

p′,
ℓ̂

16
+ 2βℓ̂

)

⊆ B(p′, 3βℓ̂) ⊆ b′′.

This establishes property (iii.b) and completes the description of the processing
required for a shrinking node.

u is a splitting node. Finally, we consider the case when u is made into a splitting
node. Recall that in this case there exists a dumbbell containing p that has length
between r/(16β) and 2γr. In the full version, we show that this fact implies that
node u can be assigned O(1) children, whose associated cells together cover the
ball bu and satisfy certain properties. Some of these children are of type-1 while
the rest are newly created type-2 nodes associated with empty balls. Roughly
speaking, the role of the type-1 children is to cover the parts of bu that lie close
to the points of S and the role of the type-2 children is to cover the parts of bu

that remain uncovered. More precisely, we have the following lemma.



Lemma 2. There exists a set B1 of type-1 balls and a set B2 of type-2 balls such
that (i) the total number of balls of B1 and B2 is 2O(dim), (ii) any ball of B1∪B2

has radius between r/64 and r/2, (iii) the balls of B1 and B2 together cover bu,
and (iv) for any ball b ∈ B2, there are no points of S in the ball 4b.

The nodes corresponding to the balls of B1 and B2 are made children of u.
From the above lemma, it is easy to see that property (iii) holds for u.

It remains to discuss the processing for the type-2 children of u. Observe that
we cannot make these nodes into leaves because their γ-expansion may contain
points of S and so they do not necessarily satisfy property (ii.a). However, by
Lemma 2(iv), we do know that a 4-expansion of any ball in B2 is free of points
of S. To increase this expansion factor to γ, we proceed as follows for each type-
2 child v of u. Let bv denote the ball associated with v, and let r′ denote its
radius. Using the doubling oracle, in 2O(dim) time we can find 2O(dim) balls of
radius r′/2 which overlap bv. We create type-2 nodes for these balls and make
them all children of v. We apply this procedure recursively to the children of v,
terminating when we finally reach nodes of size r′/2⌈log γ⌉, which are made leaves
of the region-DAG. It is easy to see that v is the root of a subtree with γO(dim)

nodes and ⌈log γ⌉+1 levels. All nodes in this subtree, except at the bottom level,
are splitting nodes, and clearly satisfy property (iii). Applying Lemma 2(iv) and
noting that the radii of the associated balls decrease by at least a factor of 2 as
we descend this subtree, it is easy to show that the leaves satisfy property (ii.a).

Next we bound the size of the region-DAG.

Lemma 3. The size of the region-DAG for an n-point set is nγO(dim) log β.

Proof : Recall that the region-DAG has O(n log β) type-1 nodes. It is clear from
our discussion above that a shrinking node acquires one child that is not of type-
1 (this child is a doughnut leaf), and a type-1 splitting node acquires γO(dim)

descendants that are not of type-1. Therefore, the size of the region-DAG is
nγO(dim) log β. ⊓⊔

In the full version, we show that the region-DAG for an n-point set can be
constructed in time O (n log n)+nγO(dim) log2 β, and also satisfies properties (i)
and (iv). This completes the proof of Theorem 1.

4 Approximate Voronoi Diagrams

In this section we show how to construct approximate Voronoi diagrams in dou-
bling spaces. Let (M, d) be a metric space with constant doubling dimension.
Our main result is as follows.

Theorem 2. Let S be a set of n points in M , and let 0 < ε 6 1/2 and 2 6

γ 6 1/ε be two real parameters. We can construct an AVD of nγO(dim) log(1/ε)
space that allows us to answer ε-approximate nearest neighbor queries in time
O (log(nγ))+(1/(εγ))O(dim). The time to construct the AVD is n(1/ε)O(dim) log n.



Given the region-DAG, the proof of this theorem is straightforward by adapt-
ing the ideas used previously for Euclidean AVDs [1,2]. We sketch the main ideas
briefly. Given the point set S and parameters 0 < ε 6 1/2 and 2 6 γ 6 1/ε,
we construct the region-DAG described in Theorem 1 for β = 1/ε. The number
of nodes in the region-DAG is nγO(dim) log(1/ε). Recall that the leaves of this
structure satisfy certain separation properties with respect to S (region-DAG
property (ii)). These properties enable us to answer queries efficiently with the
help of a sparse set of representatives stored with each leaf. The following lemma
provides a bound on the number of representatives we need to store with each
cell. Given a set X of points and a point q, let NNq(X) be the distance from q
to its nearest neighbor in X . We say that a subset R ⊆ S is an ε-representative
set for a region w (with respect to S) if for any query point q ∈ w, we have
NNq(R) 6 (1 + ε)NNq(S).

Lemma 4 (Concentric Ball Lemma). Let 0 < ε 6 1/2 and γ > 2 be two real
parameters. Let S be a set of points in M . Let b1 and b2 be two concentric balls of
radius r and γr, respectively. Then there exist subsets R1, R2 ⊆ S each consisting
of at most (1 + 1/(εγ))O(dim) points such that (i) R1 is an ε-representative set
for b1 with respect to S ∩ b2, and (ii) R2 is an ε-representative set for b2 with
respect to S ∩ b1.

In part (i), the set R1 is formed by choosing an (ε/2)-NN of each point
in an (εγr/c)-net for b1, where c is a suitable constant. Applying the triangle
inequality, it is easy to prove part (i). The proof of part (ii) is analogous. For
each leaf cell u, we can use the above lemma to find an ε-representative set R
for u with respect to S. We illustrate this for the case of a doughnut leaf cell
u (the case where u is a simple leaf is easier and is omitted). Let bO and bI

denote the outer and inner ball, respectively, for u. Recall that u = bO \ bI .
It follows from region-DAG property (ii.b) that all the points of S are either
outside γbO or inside εbI . By Lemma 4(i), there exists an ε-representative set
R1 of size (1/(εγ))O(dim) for u with respect to S ∩ γbO, and by Lemma 4(ii),
there exists an ε-representative set R2 of size O(1) for u with respect to S ∩ εbI .
Clearly, the set R = R1 ∪R2 is an ε-representative set of size (1/(εγ))O(dim) for
u with respect to S. We store the set R with u. The resulting AVD can be used
for answering ε-NN queries as follows. Suppose that the query point q lies inside
the root ball. By region-DAG property (iv), we can find a leaf that contains q in
O(log(nγ)) time. Then we return the closest representative stored with this leaf
cell as the answer. The total query time is O (log(nγ)) + (1/(εγ))O(dim). If q lies
outside the root ball, a similar approach works using region-DAG property (i).

Consider next the space used by this AVD. A naive analysis of the space
bound is provided by the product of the number of nodes in the region-DAG
and the maximum number of representatives per cell, which yields a total of
n/εO(dim). We can improve this bound significantly by applying a charging tech-
nique similar to that employed earlier in the Euclidean context [2]. This tech-
nique shows that although for a given cell, (1/(εγ))Ω(dim) representatives may
be needed, this cannot be the case for most of the cells. We omit the details due



to lack of space. Applying this technique we can show that the total number of
representatives summed over all the cells is nγO(dim) log(1/ε), and they can be
computed in time n(1/ε)O(dim) log n. This completes the proof of Theorem 2.

References

1. S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc.

13th ACM-SIAM Sympos. Discrete Algorithms, pages 147–155, 2002.
2. S. Arya, T. Malamatos, and D. M. Mount. Space-efficient approximate Voronoi

diagrams. In Proc. 34th Annu. ACM Sympos. Theory Comput., pages 721–730,
2002.

3. S. Arya, D. M. Mount, N. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. In Proc.

5th ACM-SIAM Sympos. Discrete Algorithms, pages 573–582, 1994.
4. P. Assouad. Plongements lipschitziens dans R

n. Bull. Soc. Math. France,
111(4):429–448, 1983.

5. A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor.
In Proceedings of the 23rd International Conference on Machine Learning, pages
97–104, 2006.

6. S. Brin. Near neighbor search in large metric spaces. In Proc. 21st International

Conf. on Very Large Data Bases, pages 574–584, 1995.
7. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point

sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc.

Comput. Mach., 42:67–90, 1995.
8. K. L. Clarkson. Nearest neighbor queries in metric spaces. Discrete Comput.

Geom., 22(1):63–93, 1999.
9. R. Cole and L. Gottlieb. Searching dynamic point sets in spaces with bounded

doubling dimension. In Proc. 38th Annu. ACM Sympos. Theory Comput., pages
574–583, 2006.

10. C. D. Feustel and L. G. Shapiro. The nearest neighbor problem in an abstract
metric space. Pattern Recognition Letters, 1(2):125–128, 1982.

11. A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In Proc. 44th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 534–543, 2003.

12. S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc.

42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 94–103, 2001.
13. S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics,

and their applications. SIAM J. Comput., 35(5):1148–1184, 2006.
14. D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics.

In Proc. 34th Annu. ACM Sympos. Theory Comput., pages 741–750, 2002.
15. R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity

search. In Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pages 798–807,
2004.

16. R. Krauthgamer and J. R. Lee. The black-box complexity of nearest-neighbor
search. Theoretical Computer Science, 348(2-3):262–276, 2005.

17. R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In Proc.

47th Annu. IEEE Sympos. Found. Comput. Sci., pages 119–132, 2006.
18. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms,
pages 311–321, 1993.


