
Agent Models for Concurrent Software Systems

Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt,
Christine Reese, Matthias Wester-Ebbinghaus

University of Hamburg, Department of Computer Science,
Vogt-Kölln-Str. 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI

Abstract In this work we present modeling techniques for the devel-
opment of multi-agent applications within the reference architecture for
multi-agent system Mulan. Our approach can be characterized as model
driven development by using models in all stages and levels of abstrac-
tion regarding design, implementation and documentation. Both, stan-
dard techniques from software development as well as customized ones
are used to satisfy the needs of multi-agent system development. To il-
lustrate the techniques and models within this paper we use diagrams
created during the development of an agent-based distributed Workflow
Management System (WFMS).

Keywords: high-level Petri nets, nets-within-nets, reference nets, net
components, Renew, modeling, agents, multi-agent systems, Paose

1 Introduction

The agent metaphor is highly abstract and it is necessary to develop software en-
gineering techniques and methodologies that particularly fit the agent-oriented
paradigm. They must capture the flexibility and autonomy of an agent’s problem-
solving capabilities, the richness of agent interactions and the (social) organiza-
tional structure of a multi-agent system as a whole.

Many agent-oriented software development methodologies have been brought
forward over the past decade, many of them already in a mature state. Here, we
present our contribution to this rapidly evolving field of research by describing
agent models and their usage during the development of multi-agent systems
with Mulan (Multi-Agent Nets [7]). As a matter of course there exist many
analogies to related agent-oriented development techniques and methodologies
like Gaia [15], MaSE [4] or Prometheus [11]. This concerns development methods
and abstractions like use cases, system structure (organization) diagrams, role
models, interaction diagrams and interaction protocols as well as more fine-
grained models of agents’ internal events, data structures and decision making
capabilities.

Our approach Paose (Petri net-based AOSE) facilitates the metaphor of
multi-agent systems in a formally precise and coherent way throughout all as-
pects of software development as well as a concurrency-aware (Petri net-based)
modeling and programming language. The metaphor of multi-agent systems is

R. Bergmann, G. Lindemann (Eds.): Multiagent System Technologies, LNAI 5244, pp. 37–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 Cabac, Dörges, Duvigneau, Moldt, Reese, Wester-Ebbinghaus

formalized by the Mulan reference architecture, which is modeled using refer-
ence nets. We integrate several ideas from the methodologies mentioned above
as well as concepts from conventional modeling techniques (UML). The result of
those efforts is a development methodology that continuously integrates our phi-
losophy of Petri net-based and model-driven software engineering in the context
of multi-agent systems.

This paper focuses on the set of modeling techniques used within the Paose

approach. Other aspects have already been presented, for example the multi-

agent system as a guiding metaphor for development processes in [1]. In Section 2
we introduce the basic conceptual features of multi-agent application develop-
ment with Mulan. The particular techniques, models and tools are presented
in Section 3.

2 Concepts of Application Development with Mulan

Reference nets1 and thus also Mulan run in the virtual machine provided by
Renew [9], which also includes an editor and runtime support for several kinds
of Petri nets. Since reference nets may carry complex Java-instructions as in-
scriptions and thereby offer the possibility of Petri net-based programming, the
Mulan models have been extended to a fully elaborated and running software
architecture, the FIPA2-compliant re-implementation Capa [5].

Reference nets can be regarded as a concurrency extension to Java, which
allows for easy implementation of concurrent systems in regard to modeling
(implementation) and synchronization aspects. Those – often tedious – aspects
of implementation regarding concurrency are handled by the formalism as well
as by the underlying virtual machine. In this aspect lies the advantage of our
approach. We rely on a formal background, which is at the same time tightly
coupled with the programming environment Java. Mulan can be regarded as
a reference architecture for concurrent systems providing a highly structured
approach using the multi-agent system metaphor.

We describe the internal components of the Mulan agent followed by an
investigation of the interrelations between them, which results in the organiza-
tional structure of the system. For the details of further aspects of the Mulan

architecture we refer to Rölke et. al. [7].

2.1 The Mulan Agent

The reference net-based multi-agent system architecture Mulan (Multi Agent
Nets) structures a multi-agent system in four layers, namely infrastructure, plat-

form, agent and protocol [7,12]. Figure 1 shows a schematic net model of a

1 Reference nets [8] are high-level Petri nets comparable to colored Petri nets. In addi-
tion they implement the nets-within-nets paradigm where tokens are active elements
(token refinement). Reference semantics is applied, so tokens are references to net
instances. Synchronous channels allow for communication between net instances.

2 Foundation for Intelligent Physical Agents http://www.fipa.org.

http://www.fipa.org

Agent Models for Concurrent Software Systems 39

Figure 1. Agent net

Mulan agent. Several parts of the operational model, such as inscriptions, syn-
chronous channels and initialization, are omitted for clearness. Instead, descrip-
tive names have been given to the net elements representing synchronous chan-
nels or place contents. The model stresses that the agent is a communicating
agent being able to receive and send messages. The labeled places store refer-
ences to net instances that provide or refine the main functionality of the agent.
These are the Factory, the Knowledge base, the Decision components, and the
Protocols. Protocol and decision component nets comprise parts of the domain-
specific agent behavior, the two corresponding places in the agent net may con-
tain numerous net instances (compare nets-within-nets [14]).

The factory produces net instances from net patterns of protocols and de-
cision components. It realizes reactive and proactive behavior by examining in-
coming messages and the agent’s knowledge.

The knowledge base offers database functionality including atomic query, cre-
ate, remove and modify operations to other subnets of the agent. It is used to
store persistent information to be shared by protocol nets and decision compo-
nents, for example the agent’s representation of the environment. The knowledge
base also stores the agent’s configuration. It holds information about provided
and required services, and a mapping of incoming messages to protocol nets.

Protocol nets implement domain-specific agent behavior. Each protocol net
template models the participation of an agent role in a multi-agent interaction
protocol. Instantiated protocol nets reside on the place Protocols of the agent,
handle the processing of received messages and may generate outgoing messages.

40 Cabac, Dörges, Duvigneau, Moldt, Reese, Wester-Ebbinghaus

Protocol net instances are the manifestations of the agent’s involvement in an in-
teraction with one or more other agents. They can access the knowledge base and
exchange information with decision components through the exchange channel.

Decision components implement, like protocol nets, domain-specific agent
behavior. A decision component net instance can be queried by protocol net in-
stances to add flexibility to the static, workflow-like character of protocol nets.
Decision components can also initiate proactive agent behavior by requesting
the factory to instantiate protocol nets. Thus an AI-like planning component
can be attached to an agent as a decision component or the functionality can be
implemented directly as reference nets. Decision components may also encapsu-
late external tools or legacy code as well as a graphical user interface whereby
the external feedback is transformed into proactive agent behavior.

2.2 Organizational Structure

In a multi-agent application the organizational structure has to be defined, such
that responsibilities for all aspects of the system are specified. The general per-
spectives in the area of a multi-agent systems are the structure, the interactions,
and the terminology. These perspectives are orthogonal with connecting points
at some intersections (compare Figure 2).

The structure of a multi-agent system is given by the agents, their roles,
knowledge bases and decision components. The behavior of a multi-agent system
is given by the interactions of the agents, their communicative acts and the
internal actions related to the interactions. The terminology of a multi-agent
system is given as a domain-specific ontology definition that enables agents and
interactions to refer to the same objects, actions and facts. Without a common
ontology successful interactions are impossible.

Figure 2. Two dimensional matrix showing perspectives (behavior, structure).

A schematic two dimensional matrix is depicted in Figure 2 showing the
independence and interconnection of agents and interactions. Neither is there
any direct relationship between any pair of agents, nor between any pair of in-
teractions. Thus these architectural elements are independent and depicted in
parallel to each other. Agents and interactions are shown as orthogonal because

Agent Models for Concurrent Software Systems 41

each agent is involved in some interactions. The general case for any two struc-
tural and/or behavioral elements is independence, but interconnections exist.
Coupled agents and interactions are marked by circles in the figure.

The terminology defined as ontology is the third dimension of perspectives
(omitted in the diagram). It is orthogonal to the other two, but it tends to have
many interconnecting points because each interaction and each agent uses parts
of the ontology definition to fulfill its purpose.

Since the three perspectives are orthogonal to each other and independent
within the perspective, it is easily possible to divide the tasks of design and
implementation into independent parts. This means that different interactions
can be developed by independent sub-teams and different agents can be designed
by other independent sub-teams. Between agent teams and interaction teams,
coordination is needed for the crucial parts only (circles in the diagram).

These three perspectives enable us to develop the parts of the system inde-
pendently and concurrently – thus also distributedly – as long as there is enough
coordination / synchronization between intersecting groups.

3 Techniques, Models and Development Tools

In this section we describe the techniques applied during the various stages
of multi-agent application development with Mulan. An agent-based Work-
flow Management System serves as an example application to provide real-world
models. However, since the WFMS is not the objective here, we will not go into
detail of its design.

We present the applied techniques and resulting models starting with the
coarse design giving an overview over the system, continuing with the definition
of the structure of the multi-agent application, the ontology and the behavior of
the agents.

3.1 Coarse Design

The requirements analysis is done mainly in open discussions. The results are
captured in simple lists of system components and agent interactions. This cul-
minates in a use case diagram as shown in Figure 3. Of course other methods to
derive use cases can also be applied.

A use case diagram is especially useful to derive the multi-agent application
matrix because we depict agent roles in the system as actors in the diagram. In
contrast, usually in use case models the actors represent real world users.

Figure 3 shows the Account Manager (AM) role, the Workflow Data Base
(WFDB) role, the Workflow Management System (WFMS) role and the User
role together with several interactions. Already the use case diagram reveals the
matrix structure in two dimensions. Agent roles form the multi-agent applica-
tion structure while interactions form the behavior of the system. Arcs in the
diagram correspond to the matrix interconnection points from Section 2.2. Use

42 Cabac, Dörges, Duvigneau, Moldt, Reese, Wester-Ebbinghaus

User

WFMS

AM

login/logout

init Workflow

offer Workitem List

request Workitem

cancel/confirm Activity

edit Workflow

WFDB

show State

authenticate

Use Cases in WFMS

@authors group discussion
 participants	
@date Nov 17, 2006

"/" in use cases
and actor names
refer to multiple
use cases, actors
resp.

Almost all interactions that
handle workitems have to pass
authenticaten.
For diagram conciseness these
dependencies have been omitted.

Figure 3. Fragment of a use case diagram showing the system’s coarse design.

case diagrams are drawn directly in Renew. The use case plugin provides the
functionality by adding a palette of drawing tools to the editor.

The use case plugin (UC-Plugin) integrates a generator feature, which gen-
erates the complete folder structure of the application necessary for the imple-
mentation of a multi-agent application. This includes a standard source package
folder structure, skeletons for all agent interactions, role diagram and ontology
files as well as configuration files and build / start skripts. The generator utilizes
the Velocity3 template engine.

3.2 Multi-Agent Application Structure

The structure of the multi-agent application is refined using a R/D diagram
(role/dependency diagram). This kind of diagram uses features from class di-
agrams and component diagrams. Class diagrams provide inheritance arcs to
denote role hierarchies. Component diagrams provide explicit nodes for services
as well as arcs with uses and offers semantics to denote dependencies between
roles. Initial values for role-specific knowledge bases are included through refine-
ment of nodes.

Figure 4 shows a fragment of the WFMS R/D diagram. The fragment depicts
several roles marked «AgentRole»: CapaAgent, AuthenticationNeeder, Account-
Manager and WFEngine. Also some services marked «Interface» are depicted:
SessionManagement, Authentication etc. As an example, the service Authenti-
cation is offered by the AccountManager and used by each agent that holds the
role AuthenticationNeeder.

The agent role descriptions are automatically generated from the R/D dia-
gram. Role descriptions are combined to form agent descriptions (initial knowl-
edge bases). Roles can easily be assembled to form the multi-agent application

3 The Apache Velocity Project http://velocity.apache.org/

http://velocity.apache.org/

Agent Models for Concurrent Software Systems 43

Figure 4. Fragment of a R/D diagram (agents, roles, services).

using the graphical user interface. The multi-agent application is started either
from within the tool, by a startup script or by a Petri net.

3.3 Terminology

The terminology of a multi-agent system is used in a twofold way. First, it is
used in form of an ontology definition by the agents to communicate with each
other and for their internal representation of the environment. Second, it is used
among the developers to communicate about the system and its design.

Figure 5. Fragment of the WFMS ontology.

To define the ontology of our multi-agent applications we have been using
Protégé4 for over two years now. Ontologies are defined in Protégé and then
translated by a generator into Java classes. Protégé is a very powerful tool, but
it features a completely different user interface design than Renew.

4 Protégé http://protege.stanford.edu/.

http://protege.stanford.edu/

44 Cabac, Dörges, Duvigneau, Moldt, Reese, Wester-Ebbinghaus

The Renew feature structure plugin allows to explicitly model the ontology
as a concept diagram as shown in Figure 5. These are class diagrams restricted
to inheritance and association. The concept diagrams can easily be understood
by all sub-teams to capture the context of the concepts in use.

Up to now, the translation of models from the feature structure concepts to
Protégé ontologies is a manual task. The Protégé model can then be used to
generate the Java ontology classes. However, we have also developed a proto-
typical implementation of an ontology classes generator (directly) from concept
diagrams. We are also working on transformations from and to Protégé models.

3.4 Knowledge and Decisions

While the agent’s interactive behavior is defined in the interaction protocols (see
next section), the facts about its environment are located in the agent’s knowl-
edge base. The initial knowledge of the agent is defined in its initial knowledge
base file, constructed by joining information from the role definitions, which
have been defined in the R/D diagram (introduced in Section 3.2). This XML
document that can also be customized apart from the R/D diagram is parsed to
build the initial knowledge of the agent during its initialization. Alternatively, a
text file in the style of properties files suffices for the same purpose.

START

channel
name

s

:newExchange(s, workitem, id);

[id,workitem]

>> id

[id,success]

proxy [request workitem
from proxy]

id id

requested
workitem

proxy:request
(workitem,success)

requested
workitems

[id,workitem]

>

>

>

id

id

id

id

id

id

success
information

refuse

accept

[id,success]

[id,success]
success

information

guard (success==true)

action sucs=new Success()

channel
name

s

s

:exchange(s,sucs,id)

guard (success==false)
action fail=new Failure("not")

:exchange(s,fail,id)

[report whether
successful

or not]

Request Workitem

proxy

Figure 6. Fragment of a decision component net: RequestWorkitemHandling

Decision components (DC) are constructed as reference nets. There exists a
generalized form of a DC providing GUI interface connection. Also net compo-
nents [2] for the development of DCs are provided.

Figure 6 shows a fragment of the DC net handling the request of a user for a
workitem in the workitem dispatcher agent. The net holds the proxy net which
implements the interface to the workflow engine. A request starts at the left of
the image and is handed over to the proxy, which holds a list of available work
items for the given user. The result of the request is handed back to the DC net
and passed (via the exchange channel) on to the requester, a protocol net, which
in turn sends an appropriate message to the requesting agent.

Agent Models for Concurrent Software Systems 45

3.5 Behavior

The interactive behavior of the system components is specified using agent inter-
action protocol diagrams (AIP, introduced in [10], integrated in Paose in [3]).

refuse

failure

3.

checkCredentials

request: HasRequiredUserRole

confirm / disconfirm

Accountmanager_authenticateWorkitemDispatcher_requestWorkitem

request: assignWorkitem

Figure 7. Fragment of an agent interaction protocol diagram.

Figure 7 depicts a fragment of an AIP involving the two roles AccountMan-
ager and WorkitemDispatcher in the authenticate interaction. Agent interaction
protocol diagrams are integrated in our tool set through the Renew Diagram
plugin which is also capable of generating functional skeletons for protocol nets.
As described in Section 2, protocol nets are reference nets that directly define the
behavior of a Mulan agent. Protocol nets are composed of net components [2].

>

:start()

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.renew.agent.wfms.ontology.*;
import de.renew.agent.repr.management.ontologiy.*;
import de.renew.agent.repr.common.*;
import de.renew.agent.repr.sl.*;
import de.renew.net.NetInstance;
import de.renew.net.Net;
import de.renew.agent.wfms.roles.wfdefdb.WFDDBHelper;

P2
p

>

:in(p)

p

>

p

IN

p pP2

p2

p2

>

OUT

:out(p2)

>

p2

p2

>

OUT

>

:stop()

STOP

>

InitialMessage

p

p

InitialMessage

action error = new ErrorInformation();
action error.setReason("Workflownet not found");

action p2 = Sl0Creator.createActionFailureMessage(p, error)

initial request for a WFD

send an inform-result(WFD) to WFES

send a failure to WFES

WFD WFD

wfDefwfDef

WFD

wfDef

action p2 = Sl0Creator.createReplyResultInform(p, wfDef);

o

action o = WFDDBHelper.retrieveWFD(
GetWorkflowDefinition.fromAclMessage(p).getWfDescription().getName())

WFDDBHelperReturnValue

o

WFD found

>

Error occured

>

IF

false

true

>

cond

>

>

>

>

MAJOIN

cond = o instanceof WorkflowDefinition

ErrorInformation
retrieved

>

no ErrorInformation >

IF

false

true

>

cond

>>

extract
ErrorInformation

>>

>

>

AJOIN

>

>

:out(p2)

action p2 = Sl0Creator.createActionFailureMessage(p, error)

send Failure to WFES

OUT

p2

p2

>

>>

action wfDef = (WorkflowDefinition)o;

getWFD

o

WFDDBHelperReturnValue

WFDDBHelperReturnValue o

WFDDBHelperReturnValue

o

error

error

error

action error = (ErrorInformation)o

action error = new ErrorInformation();

p
ErrorInformation

InitialMessage

cond = o instanceof ErrorInformation

WFDDBHelperReturnValue

InitialMessage

>

>

cond = (wfDef!=null)
false

trueIF

>

WFD known

WFD unknown

cond

Figure 8. A protocol net constructed with net components.

46 Cabac, Dörges, Duvigneau, Moldt, Reese, Wester-Ebbinghaus

Net components are also used for automatic generation of protocol net skeletons
from agent interaction protocol diagrams. The protocol nets are then refined
during the implementation phase by adding inscriptions to the nets. Figure 8
shows an example protocol net.5 Several decisions are made after receiving a
request message. Finally, the appropriate answer is sent back.

With the implementation of interactions as protocol nets, the internal pro-
cesses as decision components and the knowledge bases through the description
of the role diagram, the whole multi-agent application is defined.

Additionally, all diagrams presented here serve as documentation elements
and are included in the API-documentation of the system (MulanDoc Plugin).

3.6 Summary

In the context of Mulan and Paose we can identify three basic dimensions
in which the perspectives on the system can be categorized. Structure relates
to roles and knowledge, which is functionally decomposed. Behavior relates to
interactions and internal processes, which reflects the natural view via Petri nets
onto systems with respect to behavior. Terminology is covered by ontologies and
provides the glue between the different perspectives. Organizational embedding
is covered by the matrix-like treatment, which provides the relationships between
entities in the organizational context including the involved people. In addition,
Table 1 shows a table of relations between task types, modeling techniques, ap-
plied tools and resulting artifact.

Task Model Tool Result

Coarse Design Use Case Diagram UC Plugin Plugin Structure
Ontology Design Concept Diagram FS-Nets/Protégé Generated Classes
Role Design R/D Diagram KBE Plugin Knowledge Bases
Internal Processes Petri Net Diagram6

Renew
6 Decision Components

Interaction Design AIP Diagram Diagram Plugin Protocol Nets

Table 1. Overview over the contiguous techniques.

3.7 Experiences

The presented approach has been applied to several teaching projects consisting
of twenty to forty students, tutors and lecturers. The approach has been fur-
ther developed over the years, which resulted in better tool support and further
elaboration of methods and techniques (many of which were presented earlier).
After a phase of learning the concepts, methods and techniques, the students

5 The net components are recognizable and show the structure of the protocol net.
6 For the internal processes no abstract modeling technique has been presented. Several

proposals exist, but have not resulted in tool support, yet. However, those processes
can be modeled directly as reference nets in Renew or can be externalized.

Agent Models for Concurrent Software Systems 47

were able to design and construct rather complex concurrent and distributed
software systems. For example, an agent-based workflow management system
(compare with the diagrams of this paper) was developed using this approach.

The results of 5 weeks of teaching and 9 weeks of implementation include
about 10 agent roles, more than 20 interactions and almost 70 concepts in the
ontology. The outcome is a running prototype of an distributed agent based
workflow management system, where a user is represented by an agent and
the basic features are provided through a user GUI: Authentication, workflow
instantiation, offering of available tasks according to application roles and task
rules, accepting, cancellation and conclusion of tasks during the progress of a
workflow. Workflows themselves are specified with Petri nets using a special task
transition which provides cancellation (compare [6]). Thus synchronization and
conflict solving are provided by the inherent features of the Renew simulation
engine. This example and our other previous projects show that Paose together
with the guiding metaphor of a multi-agent system of developers [1] enable us to
develop multi-agent applications with Mulan. The developed methods and the
tool support have proven to be effective in supporting the development process.

4 Conclusion

In this paper we present the modeling techniques used within the Paose ap-
proach to build agent models. The tools that are used during the development
process support all tasks of development with modeling power, code genera-
tion and deployment facilities. Still some of the tools have prototypical char-
acter. Specifically, we have presented techniques to model structure, behavior
and terminology of concurrent software systems in a coherent way following the
multi-agent paradigm. All techniques and tools own semantics built upon the
unique, concurrency-oriented modeling and programming language of reference
nets, either directly or by referring to the Mulan reference architecture.

The concurrency-awareness in development process and modeling techniques
distinguishes our approach from most of the methodologies mentioned in the
introduction since they usually do not address true concurrency explicitly (com-
pare [13]). The advantage of tight integration of abstract modeling techniques
with the conceptual framework given through the formal model of Mulan is
responsible for the clearness and the effectivity of our approach.

For the future, we follow several directions to refine the approach. On the
practical side, we look into further developments, improvements and integration
of tools and techniques. On the conceptual side, we work on expanding the multi-
agent-oriented approach to other aspects of the development process like project
organization and agent-oriented tool support. Following these directions, we want
to achieve symmetrical structures in all three aspects of software development:
the system, the development process and the project organization (compare [1]).

48 Cabac, Dörges, Duvigneau, Moldt, Reese, Wester-Ebbinghaus

References

1. Lawrence Cabac. Multi-agent system: A guiding metaphor for the organization
of software development projects. In Petta Paolo, editor, Proceedings of the Fifth
German Conference on Multiagent System Technologies, volume 4687 of LNCS,
pages 1–12, Leipzig, Germany, 2007. Springer-Verlag.

2. Lawrence Cabac, Michael Duvigneau, and Heiko Rölke. Net components revisited.
In Daniel Moldt, editor, Fourth International Workshop on Modelling of Objects,
Components, and Agents. MOCA 2006, pages 87–102, 2006.

3. Lawrence Cabac, Daniel Moldt, and Heiko Rölke. A proposal for structuring Petri
net-based agent interaction protocols. In Wil van der Aalst and E. Best, editors,
24th International Conference on Application and Theory of Petri Nets, Eind-
hoven, Netherlands, volume 2679 of LNCS, pages 102–120. Springer-Verlag, 2003.

4. Scott DeLoach. Engineering organization-based multiagent systems. In Software
Engineering for Large-Scale Multi-Agent Systems (SELMAS), volume 3914 of Lec-
ture Notes in Computer Science, pages 109–125. Springer Verlag, 2005.

5. M. Duvigneau, D. Moldt, and H. Rölke. Concurrent architecture for a multi-agent
platform. In Fausto Giunchiglia, James Odell, and Gerhard Weiß, editors, Proc.
of AOSE 2002, volume 2585 of LNCS, Berlin, 2003. Springer Verlag.

6. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche. Implemen-
tation of workflow systems using reference nets – security and operability aspects.
In Kurt Jensen, editor, Fourth Workshop on Practical Use of Coloured Petri Nets.
University of Aarhus, Department of Computer Science, August 2002.

7. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of LNCS, pages 224–241. Springer-Verlag, 2001.

8. Olaf Kummer. Introduction to Petri nets and reference nets. Sozionik Aktuell,
1:1–9, 2001. ISSN 1617-2477.

9. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew – The Reference
Net Workshop. http://www.renew.de, March 2007. Release 2.1.

10. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML for
agents. In Gerd Wagner, Yves Lesperance, and Eric Yu, editors, Proc. of the
Agent-Oriented Information Systems Workshop at the 17th National conference on
Artificial Intelligence, pages 3–17, 2000.

11. Lin Padgham and Michael Winikoff. Prometheus: A pragmatic methodology for
engineering intelligent agents. In Proceedings of the OOPSLA 2002 Workshop on
Agent–Oriented Methodologies, pages 97–108, 2002.

12. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

13. Onn Shehory and Arnon Sturm. Evaluation of modeling techniques for agent-based
systems. In Agents, pages 624–631, 2001.

14. Rüdiger Valk. Petri nets as token objects - an introduction to elementary object
nets. In Jörg Desel and Manuel Silva, editors, 19th International Conference on
Application and Theory of Petri nets, Lisbon, Portugal, number 1420 in LNCS,
pages 1–25, Berlin, Heidelberg, New York, 1998. Springer-Verlag.

15. Franco Zambonelli, Nicholas Jennings, and Michael Wooldridge. Developing multi-
agent systems: The Gaia methodology. ACM Transactions on Software Engineering
and Methodology, 12(3):317–370, 2003.

http://www.renew.de

	Agent Models for Concurrent Software Systems
	Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt, Christine Reese, Matthias Wester-Ebbinghaus
	Introduction
	Concepts of Application Development with Mulan
	The Mulan Agent
	Organizational Structure

	Techniques, Models and Development Tools
	Coarse Design
	Multi-Agent Application Structure
	Terminology
	Knowledge and Decisions
	Behavior
	Summary
	Experiences

	Conclusion

