Skip to main content

Unconstrained Parametric Minimization of a Polynomial: Approximate and Exact

  • Conference paper
Computer Mathematics (ASCM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5081))

Included in the following conference series:

  • 1386 Accesses

Abstract

We consider a monic polynomial of even degree with symbolic coefficients. We give a method for obtaining an expression in the coefficients (regarded as parameters) that is a lower bound on the value of the polynomial, or in other words a lower bound on the minimum of the polynomial. The main advantage of accepting a bound on the minimum, in contrast to an expression for the exact minimum, is that the algebraic form of the result can be kept relatively simple. Any exact result for a minimum will necessarily require parametric representations of algebraic numbers, whereas the bounds given here are much simpler. In principle, the method given here could be used to find the exact minimum, but only for low degree polynomials is this feasible; we illustrate this for a quartic polynomial. As an application, we compute rectifying transformations for integrals of trigonometric functions. The transformations require the construction of polynomials that are positive definite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric optimization. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  2. Brosowski, B.: Parametric Optimization and Approximation. Birkhäuser, Basel (1985)

    MATH  Google Scholar 

  3. Corless, R.M., Jeffrey, D.J.: Well, it isn’t quite that simple. SIGSAM Bulletin 26(3), 2–6 (1992)

    Article  Google Scholar 

  4. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  5. Hong, H.: Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. In: Wang, P.S. (ed.) Proceedings of ISSAC 1992, pp. 177–188. ACM Press, New York (1992)

    Chapter  Google Scholar 

  6. Jeffrey, D.J.: Integration to obtain expressions valid on domains of maximum extent. In: Bronstein, M. (ed.) Proceedings of ISSAC 1993, pp. 34–41. ACM Press, New York (1993)

    Chapter  Google Scholar 

  7. Lazard, D.: Quantifier elimination: optimal solution for two classical problems. J. Symbolic Comp. 5, 261–266 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ulrich, G., Watson, L.T.: Positivity conditions for quartic polynomials. SIAM J. Sci. Computing 15, 528–544 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jeffrey, D.J., Rich, A.D.: The evaluation of trigonometric integrals avoiding spurious discontinuities. ACM TOMS 20, 124–135 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jeffrey, D.J.: The importance of being continuous. Mathematics Magazine 67, 294–300 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Deepak Kapur

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, S., Jeffrey, D.J. (2008). Unconstrained Parametric Minimization of a Polynomial: Approximate and Exact. In: Kapur, D. (eds) Computer Mathematics. ASCM 2007. Lecture Notes in Computer Science(), vol 5081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87827-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87827-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87826-1

  • Online ISBN: 978-3-540-87827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics