Skip to main content

Regular Decompositions

  • Conference paper
Computer Mathematics (ASCM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5081))

Included in the following conference series:

  • 1329 Accesses

Abstract

We introduce the notion of regular decomposition of an ideal and present a first algorithm to compute it. Designed to avoid generic perturbations and eliminations of variables, our algorithm seems to have a good behaviour with respect to the sparsity of the input system. Beside, the properties of the regular decompositions allow us to deduce new algorithms for the computation of the radical and the weak equidimensional decomposition of an ideal. A first implementation shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertini, E.: Sui sistemi lineari. Istit. Lombardo Accad. Sci. Lett. Rend. A Istituto 15(II), 24–28 (1982)

    Google Scholar 

  2. Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. Invent. Math. 110(2), 207–235 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wu, W.J.: On zeros of algebraic equations—an application of Ritt principle. Kexue Tongbao (English Ed. ) 31(1), 1–5 (1986)

    MATH  MathSciNet  Google Scholar 

  4. Lazard, D.: A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33(1-3), 147–160 (1991); Applied algebra, algebraic algorithms, and error-correcting codes, Toulouse (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kalkbrener, M.: Three Contributions to Elimination Theory. Technical report, Johannes Kepler University, Linz, Austria (1991)

    Google Scholar 

  6. Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a comparative implementation of four methods. J. Symbolic Comput. 28(1-2), 125–154 (1999); Polynomial elimination—algorithms and applications

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, D.: Computing triangular systems and regular systems. J. Symbolic Computation 30(2), 221–236 (2000)

    Article  MATH  Google Scholar 

  8. On triangular decompositions of algebraic varieties, Technical Report TR 4/99, NAG Ltd., Oxford, UK. Presented at the MEGA 2000 (1999)

    Google Scholar 

  9. Lecerf, G.: Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions. In: Proceedings of ISSAC 2000. ACM, New York (2000)

    Google Scholar 

  10. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symbolic Comput. 6(2-3), 149–167 (1988); Computational aspects of commutative algebra

    Article  MATH  MathSciNet  Google Scholar 

  11. Caboara, M., Conti, P., Traverso, C.: Yet another ideal decomposition algorithm. In: Mattson, H.F., Mora, T. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 39–54. Springer, Heidelberg (1997)

    Google Scholar 

  12. Laplagne, S.: An algorithm for the computation of the radical of an ideal. In: ISSAC 2006, pp. 191–195. ACM, New York (2006)

    Chapter  Google Scholar 

  13. Kalkbrener, M.: Algorithmic properties of polynomial rings. J. Symbolic Comput. 26(5), 525–581 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer, Heidelberg (1994)

    Google Scholar 

  15. Matera, G., Turull Torres, J.M.: The space complexity of elimination theory: upper bounds. In: Foundations of computational mathematics, pp. 267–276. Springer, Heidelberg (1997)

    Google Scholar 

  16. Kaplansky, I.: Commutative rings. Revised edn. The University of Chicago Press, Chicago (1974)

    Google Scholar 

  17. Becker, T., Weispfenning, V.: Gröbner bases. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)

    MATH  Google Scholar 

  18. Decker, W., Greuel, G.M., Pfister, G.: Primary decomposition: algorithms and comparisons. In: Algorithmic algebra and number theory, pp. 187–220. Springer, Heidelberg (1997/1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Deepak Kapur

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moroz, G. (2008). Regular Decompositions. In: Kapur, D. (eds) Computer Mathematics. ASCM 2007. Lecture Notes in Computer Science(), vol 5081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87827-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87827-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87826-1

  • Online ISBN: 978-3-540-87827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics