Abstract
Given f ∈ ℝ[x] and a closed real interval I, we provide a rigorous method for finding a nearest polynomial with a real multiple zero in I, that is, \(\tilde{f}\in\mathbb{R}[x]\) such that \(\tilde{f}\) has a multiple zero in I and \(\|f - \tilde{f}\|_\infty\), the infinity norm of the vector of coefficients of , is minimal. First, we prove that if a nearest polynomial
exists, there is a nearest polynomial \(\tilde{g}\in\mathbb{R}[x]\) such that the absolute value of every coefficient of \(f-\tilde{g}\) is \(\|f - \tilde{f}\|_\infty\) with at most one exceptional coefficient. Using this property, we construct h ∈ ℝ[x] such that a zero of h is a real multiple zero α ∈ I of \(\tilde{g}\). Furthermore, we give a rational function whose value at α is \(\|f - \tilde{f}\|_\infty\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hitz, M.A., Kaltofen, E.: The Kharitonov theorem and its applications in symbolic mathematical computation. In: Proc. Workshop on Symbolic-Numeric Algebra for Polynomials (SNAP 1996), pp. 20–21 (1996)
Kharitonov, V.L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differentsial’nye Uravneniya 14(11), 2086–2088 (1978)
Bartlett, A.C., Hollot, C.V., Lin, H.: Root location of an entire polytope of polynomials: It suffices to check the edges. Mathematics of Controls, Signals and Systems 1, 61–71 (1988)
Qiu, L., Davison, E.J.: A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations. Systems and Control Letters 13, 413–420 (1989)
Rantzer, A.: Stability conditions for polytopes of polynomials. IEEE Trans. Auto. Control 37(1), 79–89 (1992)
Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control, The Parametric Approach. Prentice-Hall, Englewood Cliffs (1995)
Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. Amer. Math. Soc. (1999)
Remez, E.Y.: General Computational Methods of Tchebycheff Approximation. Kiev (1957) (Atomic Energy Commission Translation 4491, 1–85)
Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons Inc., Chichester (1969)
Graillat, S.: A note on a nearest polynomial with a given root. ACM SIGSAM Bulletin 39(2), 53–60 (2005)
Hitz, M.A., Kaltofen, E.: Efficient algorithms for computing the nearest polynomial with constrained roots. In: Proc. 1998 International Symposium on Symbolic and Algebraic Computation (ISSAC 1998), pp. 236–243 (1998)
Hitz, M.A., Kaltofen, E., Lakshman, Y.N.: Efficient algorithms for computing the nearest polynomial with a real root and related problems. In: Proc. 1999 International Symposium on Symbolic and Algebraic Computation (ISSAC 1999), pp. 205–212 (1999)
Kaltofen, E.: Efficient algorithms for computing the nearest polynomial with parametrically constrained roots and factors. In: Lecture at the Workshop on Symbolic and Numerical Scientific Computation (SNSC 1999) (1999)
Mosier, R.G.: Root neighborhoods of a polynomial. Math. Comp. 47(175), 265–273 (1986)
Rezvani, N., Corless, R.C.: The nearest polynomial with a given zero, revisited. ACM SIGSAM Bulletin 39(3), 73–79 (2005)
Sekigawa, H.: The nearest polynomial with a zero in a given domain. In: Proc. 2007 International Workshop on Symbolic-Numeric Computation (SNC 2007), pp. 190–196 (2007)
Sekigawa, H., Shirayanagi, K.: Locating real multiple zeros of a real interval polynomial. In: Proc. 2006 International Symposium on Symbolic and Algebraic Computation (ISSAC 2006), pp. 310–317 (2006)
Sekigawa, H., Shirayanagi, K.: On the location of zeros of an interval polynomial. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation, pp. 167–184. Birkhäuser, Basel (2007)
Stetter, H.J.: The nearest polynomial with a given zero, and similar problems. ACM SIGSAM Bulletin 33(4), 2–4 (1999)
Zhi, L., Wu, W.: Nearest singular polynomials. J. Symbolic Computation 26(6), 667–675 (1998)
Karow, M.: Geometry of spectral value sets. PhD thesis, Universität Bremen (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sekigawa, H. (2008). The Nearest Real Polynomial with a Real Multiple Zero in a Given Real Interval. In: Kapur, D. (eds) Computer Mathematics. ASCM 2007. Lecture Notes in Computer Science(), vol 5081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87827-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-87827-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87826-1
Online ISBN: 978-3-540-87827-8
eBook Packages: Computer ScienceComputer Science (R0)